0- 0

TEXAS TM99ロ/189

8K ON BOARD MEMORY!

selectible) K ROM or 4 K RAM, 4 K ROM (link selectable Kit supplied with SK RAM. SK ROM system expandable tor up to 32 K memory

2 KEYBOARDS

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code

GRAPHICS!
64 character graphics option - includes transistor symbols! Only £18.20 extra!

MEMORY MAPPED
high resolution VDU circuitry using discrete The tor exta hexibing Has is own 2 K

KANSAS CITY

NEW LOW PRICE!

2 MICROPROCESSORS

280 he powertut CPuth 158 instruction including all 78 of the 8080 . controls the MM57109 number cruncher. Functions include + , squares Range logs egxponentiajs thig functions, inverses erc digits

EFFICIENT OPERATION

Why waste yaluable memory on sub routines for numeric processing? The number cruncher handles pverything internally

RESIDENT BASIC

With extended matnematical capability Onily $2 K$ memory used but more powerful thar
most 8 K Basics! most $8 K$ Basics

1K MONITOF

resident in EPROM

SINGLE BOARD DESIGN
Even keyboards and powet supply circuitry on the superb quality double sided plated through-hole PCB

COMPLETE KIT NOW ONLY $\mathbf{8 2 4}+$ VAT

Kit also available as separate packs: $\theta .9$ PCB. Keyboards, Cabinet, etc.

POWEFTRAN

PSI Comp 80.Z80 Based powerful scientific computer

 Design as published in Wireless World April - September 1979The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is completel Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction, iC sockets, high reliability metal oxide resistor's, power supply using custom designed toroidal transformer 2 K Basic and 1 K monitor in EPROMS and of course, wire, nuts, boits, etc

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinet!
By carefully thought out engineering a mother board with buffers and its own power supply (powered by the computers transformer) enables up to 38 K RAM or 8 K ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable.
Mother Bcard Fibre glass double sided plated through hole P.C.8. $\quad \mathbf{E 3 9 . 9}$ $8.7^{\prime \prime} \times 3.0^{\prime}$ set of all components including all brackets, fixing parts and ribbon cable with socket to yonnect to expansion plug

8K Static	Fibre glass double sided plated through hole P.C.B.	$\mathbf{£ 1 2 . 5 0}$
RAM Board	$5.6^{\prime \prime} \times 4.8^{\prime \prime}$	

Floppy Disk, PROM programmer and printer interface coming shortly!

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until April 30 th, 1980. If this month's advertisement is mentioned with your
order. Errors and VAT rate changes excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50 p handling and documentation.
U.K. ORDERS: Subsequent to 15% surcharge for VAT. NO charge is made for carriage. Or current rate if changed.
SECURICOR DELIVER: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit.

PCB size $160^{\prime \prime} \times 12.5$

UK Carriage FREE

POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)

> Editor: Ron Harris B.Se Ed. Assistant: Henry Budgett Art Director: Diego Rincon
> Production: Dee Camilleri, Loraine Radmore, Paul Edwards, Tony Strakas, Joanne Barseghian.
> Ad. Manager: Chris Surgenor
> Ad. Representative: David Sinfield Editorial Director: Halvor Moorshead
VOL.1, NO 12 FEB 1980

PAGE

NEWS

Inside information on the latest product.
PROBLEM PAGE 12
Check out the solution to the chessboard problem.
LOGIC EMULATOR 16Look after your logic in software.
MICRO UPDATE 20More news on the TRS-80.
SOFTSPOTS23 \& 36 \& 61Your very own software forum.
T4 REVIEW 24
We take a look at an advanced monitor.
NASCOM 2 REVIEWED 28
First time in print for this one.38
Travel the globe faster with your micro.
MICROLINK 43Start of our new series on interfacing.FLOWCHARTS50
Are they really more than pretty patterns?CONVERTER PROJECT52
Feed your micro from the world.
COMMUNICATION BREAKDOWN 54
A commercial interface for the PET.
TRAILERS 58
A simple method to enhance your software.
SIXTEEN BITS IN A CLASSROOM 62We take a look at the Texas University module.
MPU'S BY EXPERIMENT 68Expand your programming skills on the Mk 14.

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75
($£ 26.85$ without character generator) inc. p \& p.
Display up to $1 / 2 \mathrm{~K}$ memory (32 lines $\times 16$ chars, with character generator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. \&6.10 inc. p \& p.
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.

MK 14 MICROCOMPUTER KIT

$\$ 46.55$ inc. p \& p .

Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte PROM, 256-byte RAM, and optional 16-lines I/O plus further 128 bytes of RAM. Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology. Designed for fast, easy assembly; suppliea with step-by-step instructions.

Science of Cambridge Ltd

 Tel: 0223311488.To order, complete coupon and post to Science of Cambridge
Return as received within 14 days for full money refund if not completely satisfied.

"If you want whatis beest for your PET, choose

 Commodore software." General Manager of Commodore Systems 360 Euston Road London NW13BL

The Commodore PET is Britain's best selling microcomputer, with over 10,000 already installed in a wide range of fields, including Education, Business, Science and Industry.

This has led to a tremendous demand for high quality software.

And Commodore has met this demand by producing a first class range of programs, now available from the nationwide network of Commodore Dealers.

Commodore's support also includes training courses, a Users' Newsletter and Official Approval for compatStrathelyde Tutorial, Statistics pack 1, Assembler Development System, Stock Market Trends and the Treasure Trove Collection of game packs including the award winning Star Trek, which is packaged with Petopoly. Prices are from $£ 5$ to $£ 50$.

TRAINING COURSES AND SEMINARS

PET systems are simple to use and any normal advice or assistance

Business Information System COMBIS $£ 150$ + VAT

Combis facilitates the storage and instant retriesal of all kinds of company records, from personnel files to mailing lists and printed address labels.
Stock Control-COMSTOCK $£ 150+$ VAT
Comstock provides an accurate, up-to-the-second and comprehensiue stock position for as many as 1,300 products.
Word Processor-COMWORD \&75 + VAT
Comuord turns the system into an exvellent word processor.
you may need can be obtained from Commodore Dealers.

On the other hand, for rapid training on a basic or advanced level, you will certainly be interested in Commodore's intensive 2 and 3 day residential courses. We also run one day general appreciation seminars.

PET USERS NEWSLETTER
This is Commodore's official method of sharing new information and ideas between the many thousands of PET users. The newsletter is published regularly and for an annual subscription of $£ 10$ you can start receiving copies now. DVAPPPO Look out for this sign.
 It tells you that compatible श products of other manu-Payrol-Compayeiso +VAT Om000 facturers have met with our Compay is a new, comprehensive
standards of approval.
PET
ible products of other manufacturers who reach agreed standards.

COMMODORE PETPACS
 Over 50 Petpacs of programs are available (mainly on cassette) from Commodore Dealers

These cover such popular titles as payroll package.

(Tiek the appropriate thaxes)

A CASE FOR KEYS

A new range of keyboard cases has been announced by Vero They are available in a variety of sizes to hold numeric pads or full ASCII keyboards and they are easily dismantled for servicing. Special versions will also be available to order. For more details contact Vero at Indust rial Estate, Chandlers Ford, Eastleigh, Hampshire SO5 3ZR.

3 LINE CAT

Not literally I'm glad to say, this one is from 3 Line Computing of 36 Clough Road, Hull HU5 1QL. It contains details of all their software for the TRS-80 such as DOS 3.0, FORTRAN Pascal and many others. Software prices range from $£ 5.95$ up to $£ 276$ and the specimen documentation certainly looks good. They also do Verbatim disks at £26.45 for 10 , storage boxes at £2.19 and a 280 full colour poster for $£ 3.45$.

BOOKED Z80

A useful volume of Nascom and general Z80 Routines has been published by Sigma Technical Press at $£ 7.50$, the programs are all available on a cassette for £10. Useful inclusions are listings of all Nascom's monitor routines so any $\mathrm{Z80}$ based system can be used. Programs included, there are over 30, are

GLITCH STOPPER

If you want to stop your micro going down when your fridge switches on the L.E.A. Kleanpower may be the thing for you. Two models, MB5 and MB10 are available which simply plug in between your equipment and the power socket. The unit is

DATA PILE

Data books are the flavour of the month. RCA have released a 440 page book on COS MOS memories etc etc designated SSD-260 and it iricludes details of the 1802 micro and support chips. Well recommended this one, my copy is well thumbed already. Details from RCA at Sunbury on Thames, Middlesex. A slightly slimmer book from Intel, available free, is called Intelligence and covers details of

COLOUR 4 S100

Hi-tech Electronics have produced a full colour VDU board which is compatible with IEEE S100 system computers. Without the need for special monitors the plug-in board outputs a range of grey-scales and colours for both alphanumerics and graphics, both stand-alone or compatible with Prestel and Teletext. Features such as sep-
routines for music generation, numeric handling, screen displays, I/O routines and many others. All the programs are documented with line by line commenting and it would be a worthwhile addition to your library. Either order direct from Sigma at FREEPOST, 23 Dippons Mill Close, Tettenhall Wood, Wolverhampton WV6 7BR or try your local store.
designed to remove all surges whether of high or low energy and the resultant is then filtered before being fed to your equipment. In the event of catastrophic occurrence the unit will fail safe. For more details contact Lightning Elimination Associates at Vine Cottage, Moreton, Thame, Oxon.
their popular micros and memories. Get yours from Intel at 4 Between Towns Road, Cowley, Oxford OX4 3NB. Rapid Recall, famous for their bumper bundles, have brought out a new catalogue and price list. Covering everything from chips to systems via peripherals and including details of their PROM programming service it's well worth a look. Details from Rapid Recall at 6 Soho Mills, Woodburn Industrial Park, Wooburn Green, Bucks.
arate background and foreground colours, flashing, and double-height are standard, whilst optional sync inputs allow PAL video caption generation. The one-off price of $£ 295$ includes a software driver giving both full cursor control and page and scroll mode which can be booted from disc-based systems. Hitech Electronics are at 1 Richmond Gardens, Highfield, Southampton.

INSTANT PHOTOGRAPHY

Whether you require a refresher course for your Instamatic or a detailed set of instructions for your SLR you may find that the Petsoft Photography course will help. Written in eight parts it uses PET's graphics to demon-
strate the workings of various camera systems and tests you on what you've learnt. Each part takes 7 K and the whole course costs $£ 12+$ VAT. Details from Petsoft at 66-68 Hagley Road, Edgbaston, Birmingham B16 8PF.

AIEPCE USED SHVER Chective contas. PAPER ThenIS CAFtat:

Photocraphy Mad seis Iwvented

TAKING THE COURSE

Several micro courses will be run in 1980 and here are the details that we have to date. The London Chamber of Commerce and Industry are running a couple, the first is an Introduction to Computers and their applications which will take place on 13 Feb, 7 May and 16 July between 9.30 and 5.00 . The cost is $£ 60+$ VAT and the course reference is POL(1). The
second is a two day course on Microcomputer Programming running on $12 / 13$ March and 11/12 June between 9.30 and 5.00. The cost is $£ 110$ + VAT and the course reference is POL(2). Information on both can be obtained from Miss C.A Measures at 69 Cannon Street, London EC4N 5AB, or ring 01-248 4444

Parwest are running 2 day courses on 23/24 Feb and 24/ 25 March on microcomputers.

These assume you know nothing and spend the first day introducing you to microprocessors and the second day concentrates on BASIC. Cost is $£ 65$ including refreshments and details are available from Parwest at Cotstone Bungalow, Brinkworth, Wiltshire or ring 066-641-537.

The Reading branch of the BCS are running Spring Schools on micro's from Feb 19 to March 25 at 8 pm in Reading University on Tuesday evenings.

Contact Mrs A.E. Haworth at 33 Alexandra Rd., Reading for details, the cost of the course is $£ 25$ to non BCS members.

Finally Cambridge Micro Computers are running five day courses which are heavily biassed towards practical implementation of micro based systems. The cost is $£ 240+$ VAT and details can be obtained from CMC at Cambridge Science Park, Milton Road, Cambridge CB4 4BN or ring 0223-314666.

FLOPPY DISCO

No we didn't leave our $8^{\prime \prime}$ model on top of a fan heater, this is a new filing system for your floppy disks. The box holds up to 20 in a fan file format allowing easy access. For mini disks the cost is $£ 12.34$, for $8^{\prime \prime}$ versions it goes up to £16.10. For Apple users you can now have a synthesiser card for a mere $£ 215$. Capable of
producing 3 voices simultaneously, you can have up to 3 cards, it offers direct music entry from the screen, pitch envelope and volume control and eight octaves of range. The unit is crystal controlled and you can store tunes on tape or disk. For details on both these products contact Microsense Computers Ltd at Finway Road, Hemel Hempstead, Herts HP2 7PS or ring 0442-41191.

If you want a small terminal for building into equipment you may like to look at the Burr Brown TM25. It consists of an eight digit hex display, a numeric or hex keypad, nine function keys and indicators. Connection is via an RS232 serial or 20 mA

PROM BURNER

Fancy a cooked PROM for tea? With the new UV eraser from Microdata you can have it quicker than before. Capable of cooking up to 14 at once it can erase a 2708 in about seven min-
current loop at either 110 or 300 Baud. Cost is $£ 176$ for one off and more details can be obtained from Burr Brown at Cassiobury House, 11-19 Station Road, Watford, Herts.
utes. Timing is handled by an internal clock and it bleeps when it's done. Cost is $£ 97+$ VAT and details can be had from Microdata Computers Ltd, Belvedere Works, Bilton Way, Pump Lane Industrial Estate, Hayes, Middlesex.

SOFT ON OHIO

Mutek of Quarry Hill, Box, Wiltshire have produced a software catalogue for Ohio Scientific's range of machines. All the software is original and is fully documented. Programs range from Utilities such as Renumber, Search and Auto Loader through Games which include Chess, Starfighter and Battlefleet to Data sheets on interfaces, joysticks and others. The full catalogue costs $£ 1$ and includes a listing for the LIFE game.

MICRO POWER

HAL Computers are now stocking a range of quad output power units suitable for Intel, National and Motorola based systems. Each gives ± 5 and ± 12 volts with a choice of current capacities, all outputs have overvoltage protection and can maintain power for up to 7.5 mS after "brown-out". Prices start from £285 which carries an 18 month warranty. Details from HAL at 133 Woodham Lane, New Haw, Weybridge, Surrey or ring Byfleet 45421.

EYES ON WHEELS

If your VDU has the roaming urge then give it a trolley, or that's what Data Efficiency say. Designed to take a wide range of terminals in sumptuous comfort it will slot over your desk when needed or can simply roam the confines of your room until it
is needed. Finished in Pearl Grey(I thought that was a kind of tea) and Teak laminate it is complete with brakeable $3^{\prime \prime}$ wheels at $£ 108.24$. For details of this and all their other office and computer room furniture write to them at Maxted Road Maylands Avenue, Hemel Hempstead, Herts HP2 7LE and ask for your free catalogue.

LED DOWN THE M4

Midos, the display system from Grundy and Partners, has found a home on the motorways of olde England. The Department of Transport has chosen the system for a trial at the Almondsbury Control Centre for signal control on the M4 and M5. It replaces conventional teletype input with a quicker and less error prone fibre optic pen that activates areas of the display panel. Control of the panel is performed by dual micros and multiple arrays of the basic $8^{\prime \prime}$ by $4^{\prime \prime}$ units are identified by a printed overlay as shown. For details of this powerful new interactive display system get in touch with Grundy at Bonds Mill, Stonehouse, Glos.

PRESTEL PRINTER

Newly announced by Dataplus of 39-49 Roman Road, Cheltenham, GL51 8QQ is a Viewdata printer. Using the NMP 40 mechanism it will be sold in cased or OEM forms by Olympia International. The mechanism,supplied by Dataplus, uses metallised paper and is capable of full alphanumerics and graphics reproduction, a full page can be printed in about 3 seconds. The paper feed is of the friction type and the printhead is made up of 240 electrodes spaced across the five inch paper width. Long life and simplicity of operation are expected to be major benefits of this system over the moving head type.Contact Dataplus direct for further details.

STAR TREK,
 THE FILM

By now the film of our program should be on general release, or rather Paramount's multi megabuck production of the long running TV series. It seems incredible that the first one was made over ten years ago but in true Mc Arthur fashion they have returned. Aged they may be but these heroes of the small screen are well and living in the 23rd century. As we find our friends Admiral Kirk is taking a drop in rank to get his hands on the refitted Enterprise-much to new recruit Decker's annoyanceBones has grown a beard, Spock is undergoing re-Vulcanisation on his home planet and Scotty has been practising his accent. Most of our regular acquaintances, Mr Sulu, Uhara, Checkov, Chapel and Rand are also there in the new improved Enterprise along with the second new recruit Ilia, a bald female navigation officer from Delta. The nameless or to be more exact mis-named threat from outer space that is being problematical to all and sundry zaps a couple of innofensive Klingons and has a few goes at the Enterprise is only trying to do what it has been told.
In true Startrek format the story is just a little too weak and there is just a little too much moralising, more action and less words would have been better in my view, but in general the special effects make up for this. I say in general because there are one or two occasions when I wondered how much of the budget went on cardboard cut-outs, still the American effects people were never really up to our standards. It's nice to see Alan Dean Foster's hand in the script after his work on Alien and I was a bit suprised to find that he didn't make an appearance. On the whole it is an entertaining film but not up to the standard of Alien or Silent Running, perhaps they'll use British effects for the inevitable follow-up.

DOWN ON THE FARM

The ITT 2020 has been mooving into agriculture recently. One of the distributors of the system, Farmplan, have been given an award by Barclays Bank for their innovative herd monitoring software. Designed to give data on dairy herds or even the performance of a single cow the system has been implemented by twenty farmers. Milk some more details from ITT at Chester Hall Lane, Basildon, Essex.

CASED AIM

As we mentioned last month in our News Portable Microsystems specialise in casing single board computers such as the Nascom
family and the AIM 65. Other enhancemants that they offer for the AIM 65 include a range of Motherboard-expanders. These include an AIM to S100 unit, an AIM bus extension that gives access to the Rockwell System 65 and the Motorola

Exorciser range of boards and an AIM to KIM expansion unit. As well as stocking these they can also supply a wide range of boards to plug in. Contact them at 18 Market Place, Brackley, Northants NN 13 5SF or ring on 0280-702017.

The Perfect Lead. Acorn Microcomputer System1

Specification

The Acorn consists of two single Eurocards.

1. MPU card 6502 microprocessor 512×8 ACORN monitor $1 \mathrm{~K} \times 8$ RAM
16-way I/O with 128 bytes of RAM
1 MHz crystal
5 V regulator, sockets for 2K EPROM and second RAM I/O chip.
2. Keyboard card

25 click-keys (16 hex, 9 control)
8 digit, 7 segment display CUTS standard crystal controlled tape interface circuitry.
Keyboard instructions:
Memory Inspect/Change (remembers last address used)
Stepping up through memory
Stepping down through memory

This compact stand-alone microcomputer is based on standard Eurocard modules, and employs the highly popular 6502 MPU (as used in APPLE, PET, KIM, etc). Throughout, the design philosophy has been to provide full expandability, versatility and economy.

Price $£ 65$ plus VAT in kit form

Set or clear break point
Restore from break
Load from tape
Store on tape
Go (recalls last address
used)
Reset
Monitor features
System program
Set of sub-routines for use in programming
Powerful de-bugging facility displays all internal registers
Tape load and store routines

Applications

As a self teaching tool for beginners to computing. As a low cost 6502 development system for industry. As a basis for a powerful microcomputer in its expanded form.
As a control system for electronics engineers.
As a data acquisition system for laboratories.

START WITH SYSTEM 1 AND CONTINUE AS AND WHEN YOU LIKE

Acorn Computers Ltd. 4A Market Hill, Cambridge, Cambs. Cambridge (0223) 312772.
the CPU card of System 1, it allows for up to $41 / 2 k$ EPROM, $11 / 4 \mathrm{k}$ RAM and $32 \mathrm{I} / \mathrm{O}$ lines. It has on board 5 V regulator and optional crystal control. Custom programs may be developed on System 1 and the card makes an ideal dedicated hardware module.

A fully buffered memory card allowing up to 8 k RAM plus 8 k EPROM on one eurocard, in an Acorn system both BASIC and DOS may be contained in this module. Static RAM (2114) is used and the card may be wired into other systems.

A memory mapped seven colour VDU interface with adjustable screen format. Full upper and lower ascii and teletext graphics are features of this module which along with programmable cursor, light pen, hardware scroll etc., make this the most advanced interface in its class.

Acorn BASIC - a very fast integer BASIC in 4 k
Acorn COS - a sophisticated cassette operating system with load and save and keyboard and VDU routines in 2 k
Acorn DOS - a comprehensive disc operating system in 4 k

Order Form

Please send me the following:
(qty) Acorn Microcomputer kit @ $£ 65$ plus $£ 9.75$ VAT.
(qty) Acorn Memory kit @ $£ 95$ plus $£ 14.25$ VAT.
(qty) Acorn VDU kit @ $£ 88$ plus $£ 13.20$ VAT.
(qty) Acorn Power Supply (for System 1 only) @ $£ 5.95$ plus $£ 0.89$ VAT.
(qty) Acorn Microcomputer assembled and tested @ £79 plus $£ 11.85$ VAT.
(qty) Acorn VDU assembled and tested @ $£ 98$ plus $£ 14.70$ VAT.

I enclose a cheque for $£ \ldots$. . . .
(indicate total amount) made out to Acorn Computers Ltd.
Please send me further details of this and other Acorn options
Name
Address

GENDINE EX-PENTAGON ICBM TARSETS, MATE!

ANYPROGRESS ON THE BINARY TO.CHINESE AISPLAY COMIERTOR YET ARNOLD?

AH WELL - AS THEYSAY IN THE TRADE-SARBASE IN: SARBASE OUT!

Direct output to TV

- On board 2704/2708/2716 EPROM programmer

Sobered up from Christmas Knight? Wait no Ionger, we have the solution!

he program shown in Fig. 2 can find all possible (providing you can wait that iong!) Knight's Tours of a chess board. The knight starts at a corner square but the program can easily be modified to start at any desired square.

Method For Solution

The program uses a modified tree search technique. There are eight possible jumps that a knight may make, and these may be arranged in any cyclic order. The starting position within the cycle may also be different for different squares of the board. It is therefore possible to search for Knight's Tours which fulfil, as closely as possible, any given pattern.
eg. -- The search for a tour in which the knight circles the outside of the board as often as possible in an anticlockwise direction would have the following pattern of jumps:-

starting any where in this cycle :-

The starting position for each square being :-

1	$\mathbf{1}$	3	3	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	3
1	1	3	3	3	3	3	3
1	1	$*$	$*$	$*$	$*$	5	5
1	1	$*$	$*$	$*$	$*$	5	5
1	1	$*$	$*$	$*$	$*$	5	5
1	1	$*$	$*$	$*$	$*$	5	5
7	7	7	7	7	7	5	5
7	7	7	7	7	7	5	5

The numbers on the grid give the starting positions within the cycle for the first jump, those not shown in the centre being less important. If a jump is not possible, the next jump in the cycle is tried. If no jump is possible, the program backtracks and tries a different position for an earlier move.

The flowchart (figure 1) and the REMark statements in the program listing help to further explain the basic algorithm.

Outputting The Solution
The output is in the form of an 8×8 matrix representing the layout of a chess board. The number on any given square being the n th. position of the knight. The program was written for a RM 380 Z using DBAS9 Ver. 3.0B and graphics are used to show the tree search in action.

Modifications For Other Machines

As the program uses POKE rather than PLOT, it may be adapted for other machines by changing the screen and line pointers S9 and S8. (eg. for the 'new' PET S9 $=32768-80$ and $S 8=80$, also remove lines 1160 and 1240). The PRINT statement in line 2780 should either be removed or directed to a printer. For machines without memory mapped VDUs remove line numbers 1160, 1240, 1260, 1280, 1800, 2180, $2200,2220,2380,2400,2420,2440,2460$ and 2480 . To see intermediate positions of the board change line 2580 to :- 2580 IF $\mathrm{K}<\mathrm{n}$ THEN 1860
where n may be any number between 1 and 64 ；and add line 2930 ：－ 2930 IF K＜ 64 THEN 1860
To change the starting position of the knight change the numeric constants in lines 1720，1740，1760， 1780 and 1820．Remember that the board occupies 3 to 10 of array B as the outer elements are used as out of bounds detectors．

To change the search pattern the data must be changed．It is obviously possible to cheat and enter a search pattern which works first time．A better test of program efficiency is to time over the first，say， 10 Knight＇s Tours； this takes about 6 minutes with the given search pattern．

Glossary Of Stores Used

B－－$\quad 12 \times 12$ array to simulate the board．
S －$\quad 12 \times 12$ array to hold the search pattern．
X \＆Y 16 element arrays to hold possible knight jumps， the second 8 elements are used to facilitate effi－ cient programming and may duplicate the first 8 elements．
P \＆ $\mathrm{Q} \quad 64$ element arrays to hold the position of the knight＇s n th．move．
U \＆V 64 element arrays to hold the tree search position．
N\＄String variable for print routine．
T1 \＆U1 hold tens and units digits of knight＇s move．
S9 Screen pointer．
S8 Line length pointer．
S7 POKE address．
The other variables I，J ．．．X2，Y2 ．．．X3，Y3 ．． $\mathrm{Z} 1, \mathrm{Z} 2$ rep． resent various co－ordinates for positions on the board．

Solve The Format Problem

The trouble with＇simple to learn＇programming languages like BASIC，is that you cannot always get the output in the form you would like．One of the main differences between BASIC and other high level languages，such as FORTRAN， is the lack of a FORMAT statement．Some BASICs do have a PRINT USING statement，but these are usually extended BASICs and are only found on large machines．

Now here＇s the problem．Write a BASIC program，or better still a subroutine，to print Pounds and Pence in the way we normally write them．
example：－Two Pounds should be printed as $£ 2.00$ and not as $£ 2$ ．

1．：	\bigcirc
1340	－ 511
！05a	－14
lPae	万5：
1132	\bigcirc
1109	72：
11 the	n¢ツ
1168	CLEA？
1185	$\stackrel{\square}{\square}$

$1265 \mathrm{LE} 59=6144$
$128 \mathrm{LE} 58=128$

1422 NExT
1422 NEXT
1442 NEXT

$\begin{array}{llll}1522 & \text { LE } & B(1, & J)= \\ 542 & \text { READ } & 5(1, & \dot{3})\end{array}$
1568 NEV
158 NEXT

1620 FOP $1=1$ YO 16
1642 READ
1660 VEX
1660 NEX?
1680 QEM
1780 LET
178Q LET X3 X = 3

1760 LET P(1) = $\because 3$
1782 LET 2(1) = Y 3
18e2 POKE $59+58=6(1)=4=0(1)-8$, 49
1822 LET $5(3,3)=1$
1PAR REM **N FIX START AND END OF JYMP CYCLE
1862 LET U(K) = S(Y3, X3)
1882 LET $V(K)=U\left(K_{1}\right) \cdot 7$
1900 REM N=N* FIX KNIGHTS PRESEVT POS!T10ン *.....
1920 LET X2 F F(li)
$\begin{array}{lll}19 A E \text { LET } Y 2=O(K) \\ 1968 \text { QEM } & =* * * \\ \text { SEARCH FOR POSS:BLE JIMP POSITION }\end{array}$

1986 LET SI = U(K)
2080 LET F1 = V(K)

2028 FOR $J=\$ 1$ TO Fi
2040 LET $\times 3=Y 2+Y(j)$
$\begin{array}{ll}2040 & \text { LET } \\ 2063 & \text { LET } \\ V 3 & =Y 2+Y(J) \\ 2080 & \text { HF }\end{array}$
$\begin{array}{lll}2068 & \text { LET } & Y 3=v 2 * V(J) \\ 2880 & \text { IF } & \text { G(Y3, X3) }=g \text { THEN } 2348\end{array}$
2680 NET
2100 NEXT J wa** SUST 1:1 CASE UE EリE? FINISM ****
2120 PEM K

218 LET $57=59 \cdot 58 * G(K) \cdot 4 * P(K)-8$
22e8 POKE 57,32
22as POKE 57,32
$22 ร$ ควKE $59-1,32$
2228
2248 LET $B(O(K), P(K))=a$
220 LET $K=K-1$
2288 LET $\mathrm{K}(\mathrm{K}) \mathrm{K}$ - (uル)-1
2398 COTO 1920

234 LET U(K) = J
2368 LET $K=K * 1$
238e LET T1 = INT(K/10)
2ABE LET $111=K-10=1$

2448 POKE 57, $4 B+111$
2460 IF $T 1=0$ HEN $25 Q 8$
2480 POKE $57-1, ~ A B O-1$
2480 POKE $57-1,48, \div 1$
2580 LET $B(Y 3, X 3)=K$
252 LET $P(K)=Y 3$
2548 LET $2(K)=Y 3$
2568 REM NO** CKECK TO SEE IF BクARD 15 FULL ****
2580 if K<64 OHEN 186
2682 RDM ***** PRINT OUT KV:GHT'S TクIT ****
2628 FOR $Z 1=3 \div 018$
2648 FOR $22=3$ YO 18
2668 LET T1 $=1 \mathrm{~S}^{2}+(B(21,22) / 18)$

$\begin{array}{ll}2688 & \text { EET } \\ \text { U1 } & =3621 \\ 2788 & \text { EET } \\ 272 & =\cdots 1+1\end{array}$
2788 LET U1 $=\cdots 1+1$

2898 NEXT 22
2820 poin

2868 MEX 21
2R88 PPIVT

2928 PRINT
2948 GDTO 2248

$\begin{aligned} & 3098 \text { DATA } 1,1,3,3,3,3,3, \\ & 302 R \\ & 30 T A \\ & 1, \\ & 1, \\ & 3, \\ & 3,\end{aligned} 3,5,5,5$
$\begin{array}{ll}302 R \\ 324 R & \text { DATA } 1, \\ 1, & 1, \\ 1, & 1, \\ 4, & 5,5,5 \\ 40 & 5\end{array}$
3242 DATA 1.
$\begin{array}{ll}3242 & \text { DATA } 1, \\ 3860 & \text { DATA } \\ 308 a & \text { I }\end{array}$
3Pea DATA
$312 日$ DATA
312 DATA 7.

$3152 \mathrm{NA}-1-1,2,1,2,-2,-1,-2,1,1,-2,-1,-2,2,1,2,-1$
$\begin{array}{ll}3152 \\ 3132 & D A T A\end{array}-1,2,1,2,-2,-1,-2,1,1,-2,-1,-2,2,1,2,-1$

3122 NEM
3228 EVE
 author of "Mailing List"

We celebrated by slashing Ledger systems prices by over 60\%:

SALES LEDGER _ £95 PURCHASE LEDGER $£ 95$

Mailing List $£ 15$ Word Processor $£ 25$ PET BASIC Tutorial $£ 15$ Forth $£ 30$ Assembler/Editor £25

Statistics $£ 7$
Prices exclude VAT. Credit card orders accepted by telephone. All programs available through your local PET dealer or direct from:

VAT Pack $£ 1750$ Microchess $£ 14$
Invoicing £20

Disk Payroll 550 for up to 200 employees Disk Stock Control $£ 50$ handling 2,500 stock items (Petsof/CompuThink Disk) or 400 stock items (Commodore Disk)

AND

Super Startrek £8 Eliza Doctor $£ 8$ Backgammon 8

Radclyife House 56-68 Hagley Road. Edgbaston, Birmingham B16 8PF. Telephone: 021-455 8585 Telex: 339396

HAPPY BIRTHDAY With our next issue CT is one year old.
So we are celebrating by giving YOU presents!
As well as a superb issue of Computing Today-as usual-we are holding a fabulous competition to find out who wins the unbelieveable prizes we are giving away.

If you think we're being vague, you're absolutely right! After all all birthday presents come best as a suprise, even ones as excellent as these.

Don't miss out on our celebrations next month, it's all on us!

It is the year 5180 AD. Earth sits securely in the centre of an expanding Empire. The Silverberry FTL (Faster Than Light) Drive has taken the Terran Dreadnoughts up to 100 light years from their home planets, sweeping all before them. Up to now only two intelligent races have been discovered that have space travel capability and both have been unable to offer much resistance to the mile long battleships. Seemingly all is well with the Empire.

And then the fleet reaches the Trivax system, and is resoundingly defeated in a battle which sees the enemy using their own moons to smash the Earth forces. With the main fleet in ruins there is little to stop the invaders who sweep towards the Sol planets and Earth's last defences within her own Solar System......the battle of Terre is on........

CT offers two superb programs to simulate the result of this assault upon the outer fortresses, and the desperate planet defense against the Trivax ships that get through. Makes Captain Kirk look like the Fairy Queen!

SPACE WAR

PET
ACCOUNTING

Developed so the domesticated PET could take care of the household finances (better than those little bendy cards). The concept behind it is to set up 17 long running budget accounts and inject each with a monthly allowance, the PET does the rest.

The BASIC program can be easily adapted to suit machines with different dialects as long as they have string handling capability.

Assist your logical functions with this program. It's designed to help you design, how's that Mr Spock?

Alogic emulator is a very useful tool to own if you are involved in either designing or analysing circuits that use large quantities of gates. It's primary function is to calculate TRUTH TABLES for combinations of gates, or give the output result for a network given any specific combination of inputs (See CT, OCT 79 - 'MPU's by EXPERIMENT' for further explanation on TRUTH TABLES). The emulator described here can analyse circuits comprising of AND, OR, NAND and NOR gates with additionally the inverter function where this is represented as a NOR or NAND gate with one input.

Using The Program

To use the emulator the circuit to be analysed must be labelled so that the input/output leads can be referred to as circuit point labels. The labels 00-09 have been reserved as inputs and $10-19$ as outputs, all other points on the circuit can use 0A - OF Hex and 1A - 40 Hex (See the typical circuit point labels).

The maximum circuit size that this emulator can handle is difficult to quantify, but the number of gates, plus the number of inputs, plus the number of outputs, must not exceed FF Hex (255 decimal). Should this occur then an overflow message will be printed and the circuit must be split in two and re-entered.

To enter the circuit the gate 'type', followed by the output label, followed by the input labels, must be typed in as shown in Fig.2. Any illegal entry will be ignored and a message will be screened. It is only necessary to re-enter the error line. Immediate errors can be corrected by a backspace, but once the display has been scolled retrospective changes are not possible. To re-enter the entire circuit type ' E ' for EXIT and begin again. Once the circuit has been correctly entered type 'RUN' followed by 'New Line' and the result of the initial run with all inputs zero will be displayed with the 10 designated inputs on the left, and the 10 designated outputs on the right. (See Fig.3). To modify the inputs enter a ' 1 ' or ' 0 ' as appropriate until all 10 inputs have been modified then a re-run will automatically take place and the result displayed. Fig. 3 shows the truth table for the circuit in Fig. 1 (i.e. the output states for all possible input states). The output only occurs when input ' 0 ' is high and inputs ' 1 and ' 2 ' are low.

If, as is sometimes possible, a combination of inputs to a circuit gives an unstable situation, (as with a NAND gate that has its output coupled back to its spare input) then this condition is recognised and stated on the CRT.

To check if a circuit has been correctly entered type ' L ' for LIST when modifying the input and the first gate will be displayed. The second and so on will be displayed by pressing the 'space bar' until all gates have been listed when a re-run is made for all inputs zero. To enter a new circuit type 'E' for EXIT.

Fig. 1. A typical logic diagram with labelled inputs and outputs.

Long Term Storage Of Circuits

After entering a lengthy circuit or embarking on a protracted development, it might be advisable to store the data on tape so that it can be reloaded at any time. This has been made possible by keeping all the circuit information in one block 'OEAO - OFAO'. By storing this block, using the monitor commands of ' L ' (for T2) or 'W' (for T4) the data can be re-loaded at any time. Under this arrangement there are two execution addresses that can be used. ODC6 where it is required to list the circuit stored, or 0CC6 for the emulator to give an initial run.

Error detection is provided in the following ways
'Input Error Entry Ignored' - An incorrect gate description. Re-enter correctly.
'Circuit Overflow Re-enter it' - The total number of gates and inputs + output exceeds 255 (FFH) and the storage area has been exceeded.
'Circuit Unstable with this Input' - This is not really an error, but an indication that after 256 (100H) attempts at solving the circuit it will not stabilise.

Fig. 4. The main program flowchart with the Input and Run phase routine flow charts.

A	N	D		1	0		0		1		
O	R		1	1		1		1	2		
N	A	N	D		1	2		2			
N	A	N	D		1	3		0		1	1
N	O	R		1	4		1	0		1	3

Fig. 2. The format for the gate list data.

Program Description

The data for this program is held in two arrays, a Gate List and a State List. The gate list is used to hold the circuit topology and the state list stores the conditions existing at each point in the circuit.

The Gate List has a free format as follows:-

Each gate used a minimum of 3 bytes, a gate type, an output and at least one input. A further byte is used for each additional input. The gate list is terminated with an end statement. The form in which the above information is stored is as follows:-

$$
\begin{array}{ll}
\text { GATE TYPES } & \text { AND }=4 \mathrm{EH} \\
& \text { OR }=52 \mathrm{H} \\
& \text { NAND }=41 \mathrm{H} \\
& \text { NOR }=4 \mathrm{FH}
\end{array}
$$

0000000000
00100000000
01111000000
0100000000
000010000000
0111000000000
1000000000
10110000000
1100000000
1110000000
Fig. 3. Truth table display for the previous circuit and data. $\begin{array}{llllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llllllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000100000000 $\begin{array}{llllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 10000000
 14

INPUT \& OUTPUT STATES 64 States are permissible numbered in the range. 00 H to 40 H
TERMINATOR 055H
There are 40 H locations in the State List, one for each permissible state. 30 H is used to signify a ' 0 ' state and 31 H a ' 1 ' state.

The Initialisation Phase is used to set the gate pointer byte (OEAO) to the beginning of the Gate list. The screen is cleared and the title inserted at the top of the screen.

Circuit Input Phase

The gate entry is received from the keyboard and entered on the screen. Any entry is initially accepted providing it does not contain an 'E' which is an EXIT command and used to jump to initialisation.

When 'New Line' is pressed the entry is scrolled and the second character is used to determine the gate type. If the character is valid it is stored in the gate list as the gate type, otherwise an error message is displayed. For the rest of

the entry spaces are regarded as de-limiters and a double space as an end of entry. A search is made for each space and then the next character is checked to see if that too is a space, if not the two characters following the space are decoded from ASCII to HEX and the range checked to see if it is within $00-40 \mathrm{H}$. If it is the number is stored in the gate list and the next number searched for. On detecting a double space the input of the next line is commenced. Should the result of the ASCII to HEX conversion be outside the range $00-40 \mathrm{H}$ the gate list pointer is decremented thus searching back to the last gate type entry. This has the effect of deleting the entry, an error message is also displayed. On detecting a 'RUN' input control is passed to run phase initialisation.

The Run Phase

To initialise the program a terminator is placed at the end of the gate list and the state list is set to ' 0 '. The Run Phase consists of a set of routines which for each gate take the input conditions and produce the output condition, this is then compared with the stored output condition. If they are found to be the same the next gate in the list is processed. If not the stored gate condition is updated and processing is re-started from the first gate. When all the gates have been processed in turn without any changes in state being found.
the circuit is said to be stabilised and the program jumps to the Display outputs phase. A counter is maintained which is incremented each time the gate list is re-started. The counter starts a 0 LH and on reaching 00 H (after FFH) it is assumed that the circuit will not stabilise and an error message is displayed.

The Various Routines

The display is done by two block moves from the state list to the screen. States $00-09 \mathrm{H}$ (inputs) and $10-19 \mathrm{H}$ (outputs) are copied to the screen.

The input modification routine enables the 10 inputs (state $00-09 \mathrm{H}$) to be over written from the keyboard. An ' E ' causes a re-start from the beginning of the program, and an 'L' causes a jump to the List routine.

The list routine was included so that the circuit could be checked for accuracy if an unexpected result occurred. The gate list is scanned looking for one of the gatetype characters. When this has been detected the appropriate gate label is displayed and the following output and inputs are copied onto the display. Each gate can be inspected in turn, but not modified. When the list is complete the operation is passed to the initialisation routine and continued as before.

L19:	$\begin{aligned} & 0007 \\ & 0 \mathrm{DOP} \\ & 0 \mathrm{DOB} \\ & 0 \mathrm{DOC} \\ & 0 \mathrm{DOD} \\ & 0 \mathrm{DOF} \\ & 0 \mathrm{D} 12 \\ & 0 \mathrm{D} 14 \end{aligned}$	$\begin{aligned} & 23 \\ & C D \\ & 1 A \\ & 09 \\ & 0 E \\ & C D \\ & 28 \\ & 18 \end{aligned}$	420 D 31 AC OD E7 E8	INC HL CALL FINDST A, (DE) EXX $C=1$ CALL PROGT. IR2 L17: \|RL18:

OR
L20

NOR
L22

OD34	23		INC HL
OD35	CD	A2 OD	CALL FINDST
0 038	1 A		A, (DE)
0D39	D9		EXX
OD3A	OE	30	$\mathrm{C}={ }^{\prime} 0$
OD3C	CD	AC OD	CALLPROGT
0 D 3 F	20	BA	JRNZ L17:

INVERT OUTPUT

L23:	$0 D 41$	FF	31	CP $~=11$
	$0 D 43$	25	03	IRNZL24
	$0 D 45$	$3 C$		INCA
	$0 D 46$	18	$B 6$	IRL18
L24:	$0 D 48$	30		DECA
	$0 D 49$	18	83	IRL18

DISPLAY
L25:

OD48	21	A0	OF	$\mathrm{HL}=0 \mathrm{FAO}$
OD4E.	11	90	08	$D E=0890$
ODS 1	01	A0	00	$B C={ }^{\prime} 10^{\prime}$
ODS4	ED	BO		LDIR
0056	OE	06		SET BC $={ }^{\prime} 6{ }^{\prime}$
0D58	09			ADD HL, BC
OD59	$1 E$	9 F		$D E=089 \mathrm{~F}$
ODSB	OE	OA		SET BC = ' $10{ }^{\prime}$
005D	E. ${ }^{\text {d }}$	B0		LDIR
ODSF	EF	1 F	00	RST SCRO

input modified stage

L26	0062	11	90	08	$D E=0890$
	0065	21	A0	OF	HL = OFAO
	0068	06	OA		B $=110$ '
L27:	006A	CD	3 E	00	CALL M/CHIN
	0D6D	TE	4 C		$C P=L^{\prime}{ }^{\prime}$
	0D6F	CA	C6	OD	IZ LIST
	0072	FE	30		$C P={ }^{\prime} 0$
	0D74	28	OA		JRZ L28 :
	0076	FE	31		$C P=11$
	0078	28	06		\|R2 L28 :
	0D7A	FE	45		$C P={ }^{\prime} E^{\prime}$
	007C	28	21		IR L30
	OD7E	18	EA		JR L27
L28:	0080	77			(HL), A
	0081	12			(DE), A
	0082	23			INC HL
	0083	13			INC DE
	0084	10	E4		DJNZ L27
	0086	E1			POP HL
	0087	C3	D)	$0 \times$	JP RUN

STORE

SET TOSTATE LIST
SET DISPLAY
SET NUMBER OF CHARACTERS PRINT 10 INPUTS

SET HL TO
SET DISPLAY
SET NUMBER OF CHARACTERS PRINT 10 OUTPUTS
STEP TO OUPUT
IFIND STATE AND LOAD
SETC TO 1 ' STATE
PROCESS THE GATE FUNCTION
IF NO CHANGE REQ'D GO TO LI7
CHANGE O/P STATE

FINDST

L31 :	ODA2	06	00		$B=00 \mathrm{H}$
	ODA4	4E			C, (HL)
	ODAS	EB			EXHL/DE
	0DA6	21	AO	OF	$\mathrm{HL}=0 \mathrm{FAO}$
	ODA9	09			ADD HL/BC
	ODAA	E8			EXHL/DE

PROGT

L32:	ODAC	47	B, A
	ODAD	51	D, C
	ODAE	D9	EXX
L33:	ODAF	23	INC HL
	ODBO	7 E	A, (HL)
	ODBI	FE 40	$\mathrm{CP}=40 \mathrm{H}$
	ODB3	30 OC	JRNCL35:
	ODB5	CD A2 OD	CALL FINDST
	0DB8	1 A	A, (DE)
	ODB9	D9	EXX
	008A	B9	CP, C
	ODBB	2801	IR2L34:
	ODBD	57	D. A
L34 :	ODBE	D9	EXX
	ODBF	18 EE	JR L33:
L35:	ODC1	D9	EXX
	ODC2	7 A	A, D
	0DC3	B8	CP, B
	ODC4	D9	EXX
	ODC5	C9	RTN

LIST
STEP TO OUPUT
JFIND STATE AND LOAD
SETC TO 'O' STATE
PROCESS GATE FUNCTION IF NO CHANGE REQ'D GO TO LI7

CHANGE ATO ${ }^{\prime}{ }^{\prime}$
CHANGE A TO O.

SET CRT TO IST INPUT SET HL TOSTATE LIST

GET ENTRY
? LIST
? 0
.1.
, EXIT
GO BACK TO START
IGNORE ANYTHING ELSE
STORE NEW I/P IN STATE LIST
UPDATE DISPLAY
ISTEP TO NEXT INPUT
DO FOR 10 INPUTS
EMPIYSTACK
RUN EMULATOR
LOAD CONTENT OF GATE LIST
IENTER CHARACTER
INC AND STORE GATE LIST
POINTER
?OVERFLOW
RETURN IF NO OVERFLOW
PRINT OVERFLOW MESSAGE
WAIT FOR ENTRY
LMPTY STACK
START AGAIN

MESSAGES
MESS 1 $\begin{array}{llllllll}4 D & 55 & 4 C & 41 & 54 & 4 F & 52 & 20 \\ 50 & 52 & 4 F & 47 & 52 & 41 & 4 D & 1 F\end{array}$ 00 C9

MESS 2
$\begin{array}{llllllll}O E I A & E F & 49 & 4 E & 50 & 55 & 54 & 20\end{array}$
$\begin{array}{llllllll}54 & 52 & 59 & 20 & 49 & 47 & 4 \mathrm{E} & 4 \mathrm{~F}\end{array}$
$\begin{array}{llllll}52 & 45 & 44 & \text { if } & 00 & C 9\end{array}$
MESS 3
OE 37 EF IF 43 49 S2 43 55 49

MESS 4
$\begin{array}{llllllll}20 & 4 F & 56 & 45 & 52 & 46 & 4 C & 4 F \\ 57 & 20 & 52 & 45 & 20 & 45 & 4 E & 54\end{array}$
$\begin{array}{llllllll}45 & 52 & 20 & 49 & 54 & \text { IF } & 00 & \text { C } 9\end{array}$
MESS 5
OE7C EF 41 UE $4420 \quad 00$ C9 AND
MESS 6
UE 83 EF $4 F \quad 52 \quad 20$ (0) $\mathbf{C 9}$ OR
MESS 7
$\begin{array}{llllllllll}0589 & E F & 4 E & 41 & 4 E & 44 & 20 & 00 & C 9 & \text { NAND }\end{array}$
MESS 8
()E.91 EF $4 \mathrm{E} \quad 4 \mathrm{~F} \quad 52 \quad 20 \quad 00$ C9 NOR

SET BC TO STATE NUMBER

SET HL TO STATE LIST SET DE TO STATE

PUT INITIAL STATE IN B COPY REF. STATE IN D

ISTEP TO I/P STATE AND LOAD END OF INPUT LIST FIND NEXT STATE AND LOAD

COMPARE STATE WITH REF
IF YES DON'T INVERT REF. INVERT REFERENCE STATE
GO FOR NEXT INPUT
PUT FINAL STATE IN A HAS IT CHANGED STATE

SET TO GATE LIST
LOAD ENTRY
?AND
?OR
?NAND
?NOR
?RUN
END OF LIST
STEP TO NEXT ENTRY
LOAD CHARACTER
'NEXT GATE TYPE
DISPLAY AS 2 CHARACTERS
GO FOR NEXT REF
WAIT FOR KEY PRESSED
PRINT SUBSEQUENT GATES

OEOO EF $4 \mathrm{C} \quad 4 \mathrm{~F} \quad 47 \quad 49 \quad 43 \quad 20 \quad 45$ LOGIC EMULATOR PROGRAM

CIRCUIT UNSTABLE WITH THIS INPUT

OEFC EF $\quad 43$ 49 52 CIR $43 \begin{array}{lllll}55 & 49 & 54 \\ \text { CIRCUIT OVERFLOW RE-ENTER IT }\end{array}$

After a month or two of playing with his Trusty 80 Ian Sinclair has a few more comments to make.

After several months of intense 'playing around' with my TRS-80 I have managed to untangle some of the problems that were encountered when I was writing my review, see November's Computing Today. In an attempt to assist anyone who has bought themselves one here are a few hints.

Cassette Handling

In the review I said one or two unfair things about the cassette file handling capabilities of the machine, or so it appears on further scrutiny. I've learned that it pays to test out any program which uses cassette files, there is a very simple scheme for doing this.

In place of every PRINT\#-1 statement put PRINT : STOP, and similarly for each INPUT\#-1 you substitute STOP: In this way you will see on the screen exactly what is going to be recorded and you can jump to the step after INPUT\#-1 to see what happened on replay. This tends to save a lot of trouble with cassette testing and you can see at a glance if you are using too many bytes, or if the replay procedure is wrong.

Television Or Monitor

After Mr Heller's comments I played around with the TV circuits and concluded that I didn't really need a monitor after all. If you find that the lettering on your screen looks
a bit disjointed, in particular double ee's, it's a fair bet that there's too much bias on the modulator. Open up the modulator box and you find a standard ASTEC device, see Fig.1, with the video input taken through a 100 UF capacitor and biassed by two resistors. Try connecting a 10 K pot between the video input and the earthed case, or better still connect a 5 K pot in place of the two resistors. Starting with the voltage at around 2 V 5 gently twiddle the pot until you have the lettering as you like it (to coin a cliche). The improvement can be quite dramatic and is well worth a couple of minutes of your time. It should also be possible to improve the graphics by doing a $D C$ restore at this point.

Problem Loads

Because BASIC is so much simpler to operate than machine code it occurred to me that system tapes could be entered as part of a BASIC program, the KBFIX being a prime example. Keyboard bounce has always been a problem on the TRS-80, not of major proportions but if you get LLIST instead of LIST and like me you haven't got a lineprinter yet (at $£ 1200$ a time who has?) the whole thing hangs up until you use RESET. The manual, and other sources, tell you to remove the offending keytop and clean the contacts but on my TRS-80 they are NOT removeable so where do we go from here.

The answer is a machine code subroutine which slows down the rate at which the keys are scanned, this means that the key isn't read until after the bounce. There is a routine supplied with the machine but it simply wouldn't load, not at any setting, and a quick listen convinced me that it wasn't even made for the same machine, the version on the other side did load fortunately. As I didn't feel like going through all this bother each time I listed the machine code and wrote a short BASIC program which POKE's the values into the correct addresses at the top of memory. Now, whenever I want to enter a long BASIC program I start with this tape which lies in lines 1 to 5 along with entry procedures. I run this and then start entering the new program from lines 10 onwards. Once the new program is entered, I can then delete

MICRO UPDATE

lines 1 to 5 , or if the new program is one which requires a lot of keyboard entries I can keep the first five lines in place to make sure that there is no bouncing on new entries. It is much more satisfactory than using a SYSTEM tape. At the moment, I'm developing a method (which has worked in its first trials) of placing bytes from a system tape directly into a BASIC program without having to note down the values and enter them.

Printer Or Disc

After the first few weeks with the machine, I was convinced that the first major addition would be a disc system. A bit more experience has changed my mind. Useful as disc operation might be, a printer now seems a much more useful addition, because any program needs referring to and unless you're going to spend hours at the keyboard, the referring has to be done on a printout. It is decidedly infuriating to spend a long time sorting out a program and then having to hand-copy it from the screen.

The snag at the moment is the silly prices of printers. A printer is a box which is mainly empty and certainly doesn't contain so much expensive equipment as a $£ 150$ Japanese electric typewriter. It looks very much like the pocket calculator story again, and production levels must surely be getting to the stage where prices will drop. I'm just not going to be tempted by printers which give only 40 columns on 'peculiar' paper, what's needed is at least 80 columns on plain paper - not sprocketed, since the price of these holes is just ridiculous. Any genius who can convert a $£ 100$ electric to use bog roll and interface it to the TRS-80 should earn a fortune!

Self Instruction

All-in-all, then, l've had an instructive time - and I'm still learning fast. I've seen some good software (from A.). Harding) and I now have most of the programs I need for keeping track of my books and my accounts. There's one thing I think should be stressed to all prospective computer owners - time. It takes a long time to enter a program from the keyboard, it takes longer to get it running the way you want it, and longer still to tidy up the printing. The factor which, more than anything else, distinguishes a 'professional' program from an amateur one is foolproof operation. If each act on your part is prompted by clear instructions on the screen, if each mistake results in a rescue operation, rather than a blank screen, if answers are printed legibly with explanations of what they represent, then you have a reasonably professional program. Don't kid yourself that you can get by with much less. The acid test is to go back to a program you last used over a month ago. Can you run it right away without reading a listing to see what it's all about? If you can't or if it's not immediately obvious what you should do, then it needs a lot of work - and it all takes time. This time factor is one which must be explained to any prospective user of a microcomputer. A business user expects to be able to switch on, load a program and start operations. We may find it more interesting to develop our own programs, but there's no need to settle for less once we have them running. From that point of view, the excelling editing facilities of the TRS-80 have been worth their weight in gold. From the adverts I read, it appears that the unfortunate buyers of a system costing twice as much have to spend $£ 80$ odd on a software package which lets their machine have some of the features which are completely standard on the TRS-80. Now that more than one supplier is selling TRS-80 at $£ 399+$ VAT, it's a better buy than ever.

The debated TRS 80 monitor. If you modify the modulator circuit as shown below you can use your telly instead and save yourself a few pennies.

Iel

S100-the British way

The Vero S100 Sub Rack is a 19 " rack mountable development kit, complete with its own power supply and backplane motherboard, for the construction and evaluation of microprocessor based systems to the S100 format. The power supply provides three voltage levels $+8 \mathrm{~V},+18 \mathrm{~V}$ and -18 V . The Sub Rack has its own cooling fan providing airflow across the boards and the power supply. A full range of allied items to enable a complete system to be constructed are available.

VERO ELECTRONICS LTD RETAIL DEPT.
Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR
Tel: (04215) 62829

ORDER CODE	ITEM DESCRIPTION
188-2341H	S100 Sub Rach
06-0095L	S100 Dip Board
06-2337L	S100 High Derins. Buert
06-2338F	S100 Squaro Paj Board
15-1630K	Comparible Connetror (Solderlua)
15-1632L	Compas:ble Connector (Minwtip)
09.2340H	\$100 Extender Bota
48-8345K	M. It DSaris Cas
75-2867G	Keybcand Consie
79-1729L	Verowire Wring Kis

video genie system

*16k User RAM plus 12k Microsoft BASIC in ROM
*Fully TRS 80 level II software compatible
*Huge range of software already available
*Self contained, cassette. PSU \& UHF modulator
*Simply plugs into video monitor or UHF TV
*Full expansion capability for disks and printer

Lowe Electronics Limited, Bentley Bridge, Chesterfield Road, Matlock, Derbyshire. DE4 5LF. Telephone 06292817 or 2430 . Telex 377482 LOWLEC G

KIM CLOCK PROGRAM

The program converts a standard KIM I board to a digital clock using the seven segment displays to show hours, minutes and seconds in the usual way. Any time can be entered as a start value, and the program commenced at address 000016 .

Program Function

The program comprises three parts:

1) Initialisation. The start values are read into address locations F9 (seconds), FA (minutes), FB (hours); these being the memory locations accessed by the SCANS display routine (in the monitor ROM). Unfortunately, values cannot be directly read into these locations from the keyboard, hence this part of the program is required.
2) Delay. The current time is displayed by calling subroutine SCANS from a loop, the duration of which causes a delay of one second before the display is incremented.
3) Logic. The display is incremented such that a 24 -hour clock cycle is emulated. The processor is set in decimal mode and the program determines the values of the display memories.

Running The Program

After the program has been stored in RAM, the following procedure sets the start time:

Address	Data
0001	seconds
0005	minutes
0009	hours

The program must be started from address 0000_{16}. To change to a 12 hour cycle, put value 1116 in address 001 E . This however displays zero hours at twelve o'clock.
"Fine adjustment" of the delay loop is affected by varying normal value of $\mathrm{EB}_{1} 6$ in address $000 \mathrm{D}_{16}$, in fact a 24 hour cycle takes about six minutes if this value is reduced to 01_{16} !

0000	A9	00			LDA\% 00
0002	85	F9			STAF9
0004	A9	00			LDA\% 00
0006	85	FA			STA FA
0008	A9	00			LDA\% 00
000A	85	FB			STA FB
000C	A9	EB		START	LDA\% EB
000E	85	47			STA 47
0010	20	1F	1 F	DISP	JSR SCANS
0013	C6	47			DEC 47
0015	D0	F9			BNE DISP
0017	A2	00			LDX\% 00
0019	E0	02		NEXT	CPX\% 02
001 B	D0	11			BNE TEST
001D	A9	23			LDA\% 23
$001 F$	D5	F9			CMP F9, X
0021	D0	19			BNE INCREM
0023	A9	00			LDA\% 00
0025	85	F9			STA F9
0027	85	FA			STA FA
0029	85	FB			STA FB
002B	4 C	0 C	00		JMP START
002E	A9	59		TEST	LDA\% 59
0030	D5	F9			CMP F9, X
0032	D0	08			BNE INCREM
0034	A9	00			LDA\% 00
0036	95	F9			STA F9,X
0038	E8				INX
0039	4 C	19	00		JMP NEXT
003 C	18			INCREM	CLC
003 D	F8				SED
003E	B5	F9			LDA F9, X
0040	69	01			ADC\% 01
0042	95	F9			STA F9, X
0044	4 C	0 C	00		JMP START

Note: \% denotes direct addressing.

TIME DISPLAY

Above:- An example of the time display format on the KIM.
Left:- The flowchart for the KIM time program.

We take a close look at a powerful monitor for Nascom

The NASBUG T4 monitor program is a 2 K (two ROM's) package which when fitted into a NASCOM 1 microprocessor controls all the basic monitor functions. Documentation is supplied detailing both the commands and their uses together with an object code listing. The T4 is a third generation of Nascom monitors improving on the facilities of its predecessors. It is downwards compatible which means that the hours spent writing programs using a T2 monitor need not be wasted because all existing monitor subroutines have been retained at the old start addresses. This is very commendable on the part of Nascom as it must have presented accommodation problems.

Where To Put It

The two EPROMS are plugged into the mainboard, one in place of the T2 the other in the spare socket so ensure that the correct EPROM is put into the correct socket. The address range is 0000 to 07 FF with $0 \mathrm{C} 00-0 \mathrm{C} 5 \mathrm{~F}$ being used as a workspace area to contain reflected address and temporary registers used by the monitor subroutines.

Many new commands have been incorporated which take the NASCOM into the elevated class of business machines where intercommunication by modem or acoustic links is required. Other new commands facilities the use of printers, tape punches or teleprinters. The tape loading speed can be increased by 4 times and a generate command will enter a start address onto tape for automatic execution of program once read from cassette. Another new useful feature is the various keyboard options, and the ability of entering text into program from the keyboard.

A detailed list and explanation of all the commands follows: -
Table 1. T4 COMMANDS

T4 REVIEW

Observations

In addition to the extra commands "T4" has attempted to clean-up some of the problems of the "T2" in the area of reset and tape loading. The new cursor control character of "IC" to home the cursor without scrolling is welcome.

One feature very worthy of comment is the reorganisation of the program around the restart vectors, as follows:

Table 2. Vector assignment

Hex Code
Vector
Function

C7	RST 0	Restart the system. CF RST 8 program and return to monitor without clearing
D7	RST 10	Screen. Relative call.
DF	RST 18	User subroutine call.
E7	RST 20	Breakpoint.
EF	RST 28	String.
F7	RST 30	Call CRT display routine.
FF	RST 40	Delay timer.

The monitor as received by the author was well documented and with few exceptions worked very well, although it must be said that facilities were not available to test all the peripheral options. The arithmetic and keyboard commands were immediately recognised as most useful, and the faster read and write format was a joy to behold. There are however a few problems that need further consideration. If you are in the habit of dumping a program and then reading it back to check if it was loaded correctly BE WARNED! Any errors will be read back into the store at the expense of losing the existing program. What is needed is a VERIFY command that will compare the contents of the tape with the memory. The 'GENERATE' and 'READ' commands are also in need of attention to be of full use to those that have their tape recorder under automatic control (see CT November 1978). The generate command will not start the tape until after the generate prefixes have been output and at the end, it switches off the tape too soon preventing the execution address being recorded. Similarly when reading a tape back, the generate function will not take place because the tape will again stop early. Whilst this can be overcome with the circuit shown in Fig. 1 it must also be pointed out that in the event of input errors the monitor will still go ahead with the program execution. The text entering capability is not as straight forward as it could be although it does the required job.

An additional facility that 1 would like to see in a future monitor is the ability to specify the number of times an address is executed before a breakpoint routine is carried out. Thus a loop may be executed say 9 times and on the tenth a predetermined breakpoint effected.

Conclusions

All things being considered this monitor is a vast improvement on the T2 and well worth the capital outlay of $£ 25$. However I would hope that its deficiencies be overcome by the time the next generation of monitor (NAS-SYS) becomes available.

Happy Memories

We stock a full range of Wire-Wrapping equipment and supplies for you to choose from; we have shelves of books - give us a fing with your requirements and avoid crippling postage charges. Our stocks are too numerous to list here - free price tists sent upon request.

The shop is open from 10 until 6 Monday to Saturday and is worth a visit to catch a surplus bargain - Keyboards at 39.50 today, we may have some left when this gets to print? 18 slot $\$ 100$ Mother Boards at 22.50 ? Double Eurocard prototyping boards for a pound.

ALL PRICES INCLUDE VAT. POSTAGE FREE ON OROERS OVER 10 POUNDS IN VALUE, OTHERWISE ADD 25p. ACCESS AND BARCLAYCARD WELCOME, YOU MAY TELEPHONE WITH YOUR CARD NUMBER AND REOUIREMENTS. TRADE ACCOUNTS ON APPLICATION, GOVERNMENT \& EDUCATIONAL ORDERS WELCOME £ 10 MIN .

19 Bevois Valley Road, Southampton, Hants. SO2 0JP Tel: (0703) 39267

FULL DATA SHEET ON REQUEST

> Citadel Products Limited.
> Dept. CT. 50 High Street, Edgware, Middlesex HA8 7EP. Telephone 01-951 1848

EXPLORER/85

 FEATURES INTEL 8085 cpu

 FEATURES INTEL 8085 cpu WITH ON BOARD S-100 EXPANSION

 WITH ON BOARD S-100 EXPANSION}

NEW UNBEATABLE 1980 PRICES NOW!

FLEXIBILITY: Real flexibility at LAST. The EXPLORER/85 features the Intel 8085 cup 100\% compatible with all 8080A and 8085 software. Runs at 3Mhz. Mother Board (Level A) with 2, S100 pads expandable to 6 (Level C).
MEMORY: 2 K Monitor ROM - 4K WORKSPACE/USER RAM - 1 K Video RAM - 8K Microsoft BASIC in ROM or Cassette. INTERFACES: STANDALONE FULL ASC11 Keyboard Terminal, 32/64 characters, 16 lines. Cassette interface (with motor control and cassette-File Structure). RS-232/20Ma loop. 4, 8 bit: 1, 6 bit I/O ports, programmable 14 bit binary counter/timer. Direct interface for any S-100 Board. FULL Buffering Dicoding for S-100n Bus pads. Wait state generator for slow memory. Each stage has separate 5 v 1 A regulator for improved isolation and freedom from cross talk. P.S.U. requirements:-8v, 6.3 v AC. Runs with North Star controller and Floppies/CPM. EXPLORER/85 is expandable to meet your own requirements with easy to obtain S-100 peripherals. EXPLORER/85 can be purchased in individual levels, kit form or wired and tested. OR as a package deal as above.

Microsoft BASIC on Cassette

Microsoft BASIC in ROM

AVAILABLE NOW!

We are killing inflation with ELF II
 The tried and tested Microcomputer

 System that expands to meet your needs
STARTS AT £59.95

ELF II
Board with video output +VAT
FEATURING THE RCA COSMAC 1802 cpu
STOP reading about computers and get your "hands on" an ELF If and Tom Pitman's short course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute and the short course speedily instructs you how to use them.
ELF II's VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF II is perfect for engineers, business, industry, scientific and educational purposes.

ELF II EXPANSION KITS - Ex VAT
Power supp $6.3 \vee$ AC for ELF II $£ 5.00$
ELF II Steel Cab
Giant Bd
4 K RAM Bd
Expansion power supply
ASC II KeyBd
ASC II Cab
Kluge Bd
86 Pin Con
LIGHT PEN
Video Graphics Bd
ELF If Tiny Basic cassette
ELF-Bug
Short course on progrm
Short course on Tiny basic
RCA 1802 manual £19.75
$£ 25.50$
$£ 57.50$
£19.00
£39.95
£12.75
£11.00
$£ 3.75$
f6. 00
£61.50
£9.75
$£ 9.75$
£3.00
£3.00
$£ 3.00$
£12.75

ELF \| BOARD

SPECIFICATION
*RCA 1802 8-bit micro. processor with 256 byte RAM expandable to 64 K bytes.
*RCA 1861 video IC to display program on TV screen via the RF ModuProfessional hex with Protessional hex key to el minate the waste to el.minate the waste board decoding board decoding cir cuits Load, run an memory protect Interrupt. DMA and AlU. Stable crystal clock. Built in power regulator, 5 slot plug in expansion bus lless connectors)

Tex Editor Assembler, etc.

NEWTRONICS KEYBOARD TERMINAL

AT $£ 114.20$ + VAT

The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV, (RF Modulator required).
The characters can be any of the 96 ASC 11 alphanumerics and any of the 32 special characters, in addition to upper/lower case capability it has scroll-up features and full X-Y cursor control. All that is required from your microcomputer is 300 baud RS232-C or 20 ma loop serial data plus a power source of 8 V DC and 6.3 V AC. The steel cabinet is finished in IBM Blue/Black. And if that is not enough the price is only $£ 114.20$ + VAT as a kit, or $£ 144.20$ + VAT assembled and tested. Plus £2 P \& P (Manitor not included).

RACAL AP12, C12 TAPES: 10 for $£ 4.50$ + VAT
NOW AVAILABLE 8K FULL BASIC FOR ELF II
NEWSOFT GAMES FOR ELF II: 4 for $£ 5+$ VAT

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices (except manuals) P\&P £2. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number.

NEW ADDRESS: H. L. AUDIO LTD BIGGER PREMISES 255 ARCHWAY ROAD, LONDON N6 5BS

NEW PHONE No. 01-348-3325

WE ARE NOW OPEN FOR DEMONSTRATIONS AND SALES MON-SAT 9.30-6.30pm NEAR HIGHGATE UNDERGROUND ON MAIN A1 INTO LONDON

ARRRGGGHHH

Here we see a classic case of CT deprevation. Bulging ringed eyes, pro-
fuse sweating, enlargement of the chin and nose, deformation of the digits. A particularly nasty case this. Undoubtedly terminal I'm afraid. The specimen displays the usual manic increase in strength which in this case was employed to tear the newsagents sign from its roots and beat to death not only the gentleman walking away with the last copy of Computing Today but also three grannies, five dogs (assorted breeds) a police informer buying Mayfair, two schoolchildren, a tax inspector in drag (OBE) half the County Cricket Club and a passing coach load of nuns, before being brought down by the entire workforce of the local iron foundary. Of course all this could have been avoided oh so easily had the poor unfortunate taken out a subscription to CT and had a years supply delivered to his door.

As it is the nurse is gonna have a hell of a time trying to get the magazines through the letterbox of the padded cell. Why not make the world a safer place and take out a sub yourself now - before the hands begin to tremble and the eyes begin to spin. It only costs $£ 8.00$ a year ($£ 9.00$ overseas surface mail) - a small price to pay.

Computing Today Subscriptions Dept.
M.A.P. PO Box 35,

Bridge Street,
Hemel Hempstead,
Hertfordshire.

Has the wait been worth it? We took a close look at the new Nascom 2 and reveal the inner secrets of this much delayed machine.

Those of us that have elephantile memories will recall that back in March 1979 NASCOM MICROCOMPUTERS announced their second generation system and christened it the NASCOM 2. In keeping with tradition, 9 months later, their baby has been born in all its glory and the team of enthusiasts (turned professional) are duly proud of their creation.

This high density single board computer has a built in flexibility that no other system in the same class can match. With its integral $2 \mathrm{~K} \mathrm{NAS} / \mathrm{SYS}$ monitor, 8 K BASIC and 8 K (+ a bit or two) user RAM it represents a significant improvement on its predecessor.

The system supplied to us for review was ready assembled and incorporated the full compliment of 8 K static RAM. Due to the present shortage of static RAM in production quantities the kit is being sold with a separate RAM board and 16 K of dynamic RAM for the same price of $£ 295.00+$ VAT + power supply if required. This additional RAM board will be reviewed in a later article if we are fortunate enough to take delivery of one.

System Architecture

It comes as no great surprise that the system architecture has great similarities with most other micro-systems. Centred around the three main BUSSES (the control bus, the data bus and the address bus) the central processing unit (CPU), the memory and interfaces are appropriately interconnected to give a 16 -bit address and 8 -bit data capability. The published architecture diagram is shown in Fig 1.

Nascom have sensibly retained the use of the Z80 family of chips and have uprated to the Z80A, which has the same machine codes and facilities of the Z80 but will operate at twice the speed, viz 4 MHz . With the provision of MK 4118 static RAM chips the whole system can be operated at this speed although an
option for 2 MHz running is provided. When the 16 K RAM board or the promised 48 K RAM board are used the system can be run in a compromise mode, whereby the CPU will be operated at 4 MHz whilst a hardware controlled WAIT period can be used to slow down the operations that require memory accessing to take place.

A welcome new innovation is POWER-ON-RESET, which is switch adjustable for reset to any one of the thousands hex addresses (typically $0000 \mathrm{H}, 2000 \mathrm{H}, \mathrm{A} 000 \mathrm{H}, \mathrm{E} 000 \mathrm{H}$ etc). With the monitor located at 0000 H and BASIC at EOOOH it means the system can be reset to either the monitor or direct to BASIC. This sort of flexibility is a feature of the entire architecture and accordingly options are also available to replace all onboard user RAM by PROM allowing the board to be as suitable for dedicated systems as for development systems. Even the 8K BASIC ROM can be replaced by another $2 \mathrm{~K}, 4 \mathrm{~K}$ or 8 K ROM that may be desired, particularly useful if other high level languages become available.

The usual method of memory allocation is shown in the memory map of Fig 2.

The 1 K video RAM is organised to give a 16 -line by 48 -chars display with large wasted offscreen borders. The top line is unscrolled so theoretically can be used for titles etc (see MONITOR). This video RAM area can be written to or read from as any other user RAM providing an extra $1 K$ of workspace area if the system is to be used without a monitor display, but when used in its more common memory mapping role it facilitates precise and flexible display formatting. In this mode it is important that any character to be displayed should conform to the standard to the standard ASCII code, with bit 7 set for use with the graphic characters.

In common with many other systems, NASCOM have chosen to ignore the plight of the many users who have built their systems around the non-standard aspect ratio (5×4) of the portable TV resulting in the tendancy for the first and last characters of a line to be lost in the off-screen area. Whilst I appreciate the technical problems for NASCOM I am also very aware of the operational problems for their customers.

A fundamental requirement of any new system is its capability in communicating with peripheral equipment. The keyboard is the most important and will be dealt with separately, but printers, floppy disk systems, modems etc are becoming increasingly more popular as their prices fall, and we must not forget the humble cassette recorder. Here again the designers have considered every possibility and have provided options for

TTY/cassette, RS232/20mA interface, half or full duplex working with all the combinations of single/double stop bit, odd/even parity etc. In practice, as with most 'all-singing-all-dancing' machines the biggest problem becomes one of selecting which options are required for each application.

The cassette interface has now been standardised to the KANSAS CITY format and will run happily at 1200 baud (and faster if high quality tape and cassette recorder are used). With the addition of a relay the cassette can be made to start or stop under the control of the CPU, the relay contacts being wired to the remote input to the recorder.

Also provided is a 16 bit Programmable INPUT/OUTPUT port organised as two 8 bit ports with handshake controls, which can be used for interfacing to a wide variety of user controlled circuits such as relay boards, A-D convertors, floppy disc controllers etc. The outputs of these ports are automatically reset by the power-on-reset controls and all outputs and inputs are well buffered. The technical manual for this device is included in the documentation.

The VDU interface takes two forms: A video monitor output of 1 V at 75 ohms for direct connection to a monitor or video section of a TV, and this gives a very sharp and stable display; or a UHF output from an ASTEC modulator which has proved a little disappointing. The one provided on the review system proved to be slightly unstable. Nascom were asked to comment and they suggest that it is a 'one-off' fault. It is true that other NASCOM users have not reported this problem.

Expansion

All of the Z80A control leads, data bus and address bus leads are fully buffered and are available on the 77 -way edge-connector in the NASBUS format. This is fully documented in the system manual. There are a few spare locations that have been reserved for the future but these could be used in the interim by the user if required. The bus is capable of supporting the full 64 K memory and or input/output port boards. All memory addressing is carried out on the expansion boards.

Fig 1. The Nascom 2 architecture diagram revealing sensible design ideas and wide flexibility.

The 3 A power supply unit. The cardboard box it came in makes a useful case for it until we get our racking system. Construction is simple and it performs perfectly, although a little warm.

Keyboard

The keyboard is an expanded version of the one used on the NASCOM I adding 10 new keys for cursor control, graphic control and some extra characters. It comes ready built to the same high quality standards that are characteristic throughout.

The board is connected to the CPU board by a ribbon umbilical cord which MUST be connected to the correct socket first time or permanent damage will take place. Nascom comment that this could not be made mechanically foolproof for technical reasons. The keys are of a pulse transiormer type which makes them very reliable and robust to the unsympathetic user. The only bad point is the incredibly poor fixing of the RESET kev; ideally this should be removed from the board entirely and resited separately in the keyboard cabinet. A suitable cabinet is manufactured by VERO ELECTRONICS and is priced about $£ 17$.

Fig 2. The typical, and recommended, memory map for the Nascom 2 with 8 K of user RAM and 8 K of BASIC,

Physical Realisation

The glass fibre printed circuit board has been laid-out and manufactured to industrial standards with all integrated circuits orientated so that pin 1 is at the bottom left-hand corner for horizontal positioning, or top left-hand corner for vertical positioning, thus reducing to a minimum the likelihood of ICs being plugged in incorrectly.

The assembly instructions are clear and precise with numerous check lists backed up with circuit diagrams, overlays and printed circuit drawings. A few documentation errors have come to light and these have been passed on to NASCOM for immediate correction. For the experienced constructor there should be no real problems, the secret being 'take your time and triple check everything'. Inspect every soldered connection for being 'dry' and when it comes to inserting ICs engage the assistance of wife, dad or friend to help. Be especially careful with the larger chips not to buckle any pins, and take the suggested precautions against static. Any mistakes could prove to be costly. For the novice, DON'T START!!!

If troubles are experienced there is adequate documentation available in the manual, which together with the unprecedented practice of including test points on the board, fault finding has been greatly simplified. Should it be necessary to call in the experts there are two possible routes; Nascom offer a flat rate repair and 'get it working' service for a cost of $£ 35.00$, or Jason Twell of the INUC in Lancaster will repair for cost + marginal handling charge.

NASCOM have chosen to stay with the single board construction which has immense benefit for the enthusiast whose main interest is in programming. It simplifies the boxing arrangements and eliminates infuriating problems from interconnecting leads. (Where expansion is carried out a motherboard can be used). The real disadvantage when using it as a dedicated system is the inherent redundancy of components and space, together with a restriction on hardware modification. However the cost of providing modular construction would probably overshadow its advantages.

Power Supply Requirements

The power supply is an optional extra with this kit and for the 3A version is priced at $£ 29.50+$ VAT. To my knowledge the 8A version is not yet available. I am assured that the 3A model, which has already been well proven in service, is adequate for all envisaged expansion. Its output ratings are: +12 V at $1 \mathrm{~A},+5 \mathrm{~V}$ at $3 \mathrm{~A},-5 \mathrm{~V}$ at 0.5 A and -12 V at 0.5 A .

The electrical design is fairly standard with all the outputs clamped to prevent voltage crossover when the mains input is removed. (If a home-brew power supply is used it must be protected in this way and full details are given in the manual). Like the main board it is constructed on a glass fibre PCB and is clearly annotated. The mains transformer is included in the price of the kit.

The Monitor

The 2 K NAS/SYS monitor is supplied in one ROM package which MUST be strapped to memory locations $0000 \mathrm{H}-07 \mathrm{FFH}$. It is the next generation of monitor following the T4 and contains virtually all of the features offered in that package. But that is where the similarity ends. NAS/SYS is NOT downwards compatible and programs that have been written for use with the T2, T4 or B-BUC

Table 1

NAS-SYS RESTART INSTRUCTIONS

CODE	ASSEMBLER		NAME	FUNCTION
C7	RST	9	START	Reset computer. Initialise NAS-SYS.
CF	RST	8	RIN	Obtain an input character in the A register
D7	RST	10 H	RCAL	Relative Call. Follow this code with the displacement to the routine to be called. This is similar to the $\mathbf{Z 8 0}$ Jump Relative instruction. and it allows relocatable code to be written
DF	RST	18 H	SCAL	Subroutine Call. Follow this code with the number of the routine to be called. This is the method used to call the NAS-SYS routines. See the next section
E7	RST	20 H	BRKPT	Store and display the program registers, then return control to NAS-SYS. This is used by the Breakpoint command.
EF	RST	28 H	PRS	Output the string of characters following this code until a () is encountered. Then continue execution with the next instruction. This provides a very simple way of displaying a message. The A register is set to 0 .
F7	RST	30 H	ROUT	Outnut the character in the A register.
FF	RST	38 H	RDEL	Wait for a period of time dependent on the value in the A register. A is set to O.

N2 REVIEW

Left: The complete Nascom 2, we actually got the 4118 ! The croc clips in the top right corner are connected to our video monitor, see below. The superb board layout and high packing density mean that this is not really an amateur project.
Below: Our trusty monitor connected up. The manual makes a useful shade!

monitors will have to be ammended. However the manual includes a very detailed user section and a complete machine code/ mnemonic listing. The most important differences are those of the display format, which will now write down from line 2 to line 15 before scrolling, the special control characters for $\mathrm{N} / \mathrm{L}, \mathrm{B} / \mathrm{S}$, clear screen etc have also been changed to conform to the ASCII standard, and the monitor subroutines have been relocated. All monitor subroutines can be accessed by using a system restart and a vector. This usage of the restart control of the $\mathbf{Z 8 0}$ dominates the philosophy of this monitor. The common routines of INPUT, OUTPUT, STRING and DELAY can all be called by a single machine code instruction and user subroutines can be called by relative addressing thereby saving one byte per CALL. The organisation of the system restarts is shown in Table 1, with the monitor commands in Table 2.

Table 2

LIST OF COMMANDS

(D. F, P, Y commands do not exist)

Some of the commands are worthy of more detailed description. Typically the ' X ' command is multipurpose and can set, from user program if required, to any one of the output options mentioned earlier. The VERIFY corrects the deficiency in the T4 and permits verification of a program being correctly stored onto tape without the possibility of correcting the program held in RAM. 'K' sets the keyboard to allow upper case or lower case direct entry from the keyboard by reversing the function of the SHIFT key, or sets the direct entry to graphics. ' 1 ' \& ' O ' are very useful, they will permit the interrogation of a port, or the output control of a port direct from the keyboard.

The main additional feature of this monitor over all the others is its cursor control and screen editing facilities. Using the four directional arrows the cursor can be moved into any location on the CRT ready for character entry. Control characters can further be used to insert or delete characters, or delete whole lines, return cursor to the beginning of a line, or move it to the start of the next line. When used in conjunction with the BASIC it is most impressive.

It is perhaps unfortunate that this monitor was planned so soon after T4 that the deficiencies in the breakpoint and generate commands have been perpetuated but this in no way should detract from what is a well thought out monitor program.

The BASIC Story

For the benefit of those who are not familiar with the term BASIC I will explain that it is the name given to the high level language that was developed in America to enable a programmer to communicate with a computer in a manner that is nearer to English than machine code. It is very versatile and considerably simplifies program writing. BASIC comes in many sizes and styles and the one chosen for the NASCOM II is an enhanced 8 K version that is based on the increasingly popular MICROSOFT package. There are already several computers on the market using this package so there is a wealth of published programs that can be used without too much alteration. I said that it was an enhanced 8 K and this is because it utilises the monitor subroutines and particularly the cursor control, leaving space available for additional commands. It is contained on one MK36000 64K bit ROM and is normally addressed in locations E000-FFFF.

The arithmetic capability offers a 7 -digit floating point accuracy in the range of 1.70141 E 38 to $2.9387 \mathrm{E}-38$ with all the usual mathematical and trigonometrical functions. In addition the three extra functions of AND, OR and NOT are included.

In addition to the more common COMMANDS there is MONITOR, for passing system control directly to the NAS/SYS monitor, WIDTH, for adjusting line length on printers, and LINES for selecting the number of lines to be listed under the LIST command.

A novel feature is the first appearance of DEEK and DOKE. These are double byte versions of PEEK and POKE and allow a two byte specified number to be read from or inserted in a chosen double byte memory location. Especially useful when user machine code subroutines are used.

There are also commands designed to make the most of the memory mapped display and particularly the graphic display capability. CLS - to clear the screen, SCREEN (X, Y) - to set the cursor to a specified screen position and SET, RESET \& POINT for very sophisticated picture work.

The string handling facilities are also an important feature of BASIC and these are adequately supported by all the usual functions, including 'FOLLOW ON', 'NEXT LINE' and 'NEXT ZONE' punctuation. Positioning of strings is aided by being able to specify the number of spaces to be omitted or by setting a TABulation control.

The new extended keyboard with full cursor control, RESET is still in a bad position though.

A full list of the BASIC commands and the intrinsic functions is given in Table 3. In addition there are 19 ERROR messages to assist in program debugging.

The system variables can be one or two characters wide with the first character always alphabetical and the second alphanumerical. There may be as many subscriptions as can fit onto one display line. Strings can be up to 255 characters in length and can be comprised of literals, variables or functions. As with all finite things a compromise has to be made and the more useful commands that have been omitted are RENUMBER and the MATRIX set.

On the whole a very comprehensive compliment of commands and functions and one which outclasses other BASICS of the same size, however there is one problem that ought to be highlighted, and that is the lack of an ESCAPE facility from any of the CASSETTE INPUT or OUTPUT functions. Whilst this may not appear on the surface to be very important the implications can be catastrophic. If for example the option of 'power-on reset to BASIC' has been selected then an error in the tape loading that caused the 'Finish' signal to be missed would result in a continuous load. Push reset to abort the command and you lose your entire program without a tape back-up. With the 'power-on reset to monitor' the program is still saved as long as the WARM START (Z) command is used to get back to BASIC. The two other facilities that I would have liked to see are line display immediately on error detection and the shift key + cursor control key to create a repelitive shift of the cursor.

Functional Tests

The system reviewed functioned well under both the monitor and the BASIC, although it must be said that it took some time to ascertain which options should be used despite the detailed explanations in the handbook. There are to date two known problem areas which can easily be put right. First is the dreaded 'memory plaque' which NASCOM tell me is unlikely to occur, but they do devote a whole page to describe its causes and cures. The second is a corruption of the characters on the display which manifests itself in two ways, either the whole display is shifted one character to the right revealing the left border, or segments are missing from a character. The recommended cure is shown in

Fig 3. A quick cure for the video problem, see text, we had no trouble with our board fortunately.

Fig 3, but to be fair the review system did not have this fault and NASCOM are modifying their kits now that they are aware of the problem.

To assess the efficiency of the BASIC the BENCHMARK tests were carried out for all three operation speeds and a comparison of these against the Commodore PET are given in Table 4.All timings are in seconds.

Summing Up

At a time when the advances of technology are so rapid that the most modern equipment becomes obsolete before it even hits the production lines NASCOM can be well pleased with their achievement. This system at under $£ 400.00$ up and running presents a challenge to the rest of the market, paving the way for the next few years at least. Its flexibility allows expansion and interconnection to most innovations that can be envisaged.

As a kit this may well be the last of its kind and I look forward to the day when the computer enthusiast with little hardware experience can buy one ready built. Nascom are planning a printer and floppy disc system as back-ups and the age of connecting home systems to modems and using large mainframe central computers is probably not far off. The advantage of this machine is that it is ready and waiting for these trends.

It has not been possible to comment on everything due to the lack of time and peripheral equipment but as more people adopt this system the better proven it will be. Certainly it presents excellent value for money and in the end that's what counts.

N2 REVIEW

Table 3

COMMANDS

NEW	LIST	CONT	MONITOR	RUN
CLEAR	NULL	SCREEN	LINES	WIDTH

	OPERATIONS		
$=$	-	+	\times

ABS	ATN	LOG	SIN	PEEK
INP	INT	SGN	TAN	SPC
POS	RND	USR	COS	DEEK
SQR	TAB	EXP	FRE	POINT
			STRING FUNCTIONS	
			FRE	STR

CASSETTE INPUT／OUTPUT FUNCTIONS

CSAVE（array or program）CLOAD（array or program）
CLOAD？（to check a array or program is stored accurately）

Table 4.

BENCHMARKS TESTS					
TEST	4 MHz	$4 \mathrm{MHz}+$ WAIT	2 MHz	PET	
1	1.1	1.3	2.4	1.7	
2	5.4	6.7	13.2	9.9	
3	11.1	14.0	28.0	18.4	
4	11.7	14.9	29.5	20.4	
5	12.8	16.1	31.9	21.7	
6	19.4	24.7	49.21	32.5	
7	27.9	35.3	69.8	50.9	
8	5.2	6.5	12.9	12.3	

the new TEXTIE MARK FIVE nascom 1 word frocessor

：powerful feztures include：

＊WORD WRAP－ROUND ON UP TO 120 COLUMN LINE
＊auto lateral offset moves page sideways
＊FULL PRINTER CONTROL arsin－spacins－lensth
＊powerful editing，latchable shift etc．，etc．
＊relocatable error checked tape read a write
ON CASSETTE WITH DOCUMENTATION P／P ONLY 13.50 REQUIRES T4 AND A HINIMUM OF 8K RAM EXPANSION
for adults amusement only

soothsayer

＊＊水冰冰水水水水
BASED ON ANCIENT URITINGS＂soothsayer＊MAKES AN IDEAL PARTY GAME ANY TIKE OF THE YEAR ANSUERING QUESTIONS ABOUT MARRIAGE，PERSONAL WEALTH，ETC． USES LARGE AMOUNT OF DATA IN FORMING ITS REPLIES BUT WILL RUN ON AN UNEXPANDED NASCOM 1．ASK YOUR FRIENDS TO JOIN YOU IN SOME OF THE MOST ENJOYABLE COMPUTER ENTERTAINMENT AUAILABLE．SELLS AT 6．50．

ORDER TODAY IIREECLY FROM：

 THE SOFTWARE PURLISHING COMPANY 8A CHURCH SIDE，MANSFIELD，NOTTS Telephone：（0623） 29237TELEPHONE ORIIERS FY ACCESS
Word Processor now includes direct entry colour graphics．Telephone for details．

D．C．POWER SUPPLIES
Now，like Intel，Motorola and National you can buy Power－One open frame power supplies and enjoy quality and reliability at LOW LOW prices．Over 70 different models to choose from including floppy disc drive supplies as well as single，double，triple and quad output．

Floppy Disc Drive

Supplies

with connectors and cables for Shugart drives if required
CP 249 －drives one mini drive $\mathbf{C 3 3 . 0 0}$ CP 323 －drives two minı dives $\mathbf{5} 80.00$ CP 205 －drives one Shugar
SA800 or equivalent 8^{-}drive CP． 206 －drives two SA800

Single Output

5 S at 27 A w OVP 5 V at 54 A W OVP 12 V at 6 A 15 V at 54 A

Dual Output
+121015 V at 15 A +18 to 24 Vat 0.4 A
\＆ 5 V a15 5 A w OV

Triple Output

$5 \mathrm{~V} 9.15 \mathrm{~V},-5,-12,15 \mathrm{~V}$ at 18 A to 108 A From［41．00 to $£ 137.00$

Discount available to bona－fide educational establishments．Quantity discounts start at five units Trade enquires welcome
Send large SAE for full catalogue and price list

COMPUTERS LTD．，
133 Woodham Lane．New Haw，Weybridge Surrev KT15 3NJ．Tel．Byfleet（09323） 45421

What Is A Microprocessor?
2 Cassette tapes plus a 72 page book deal with many aspects of microprocessors including Binary and Hexadecimal counting, Programming etc.
$\mathbf{£ 1 2 . 0 0}$
Adams, C. BEGINNERS GUIDE TO COM-
PUTERS AND MICROPROCESSORS WITH
PROJECTS
Understanding building programming and operating
your own microcomputer.
Ahl, BASIC COMPUTER GAMES
£5.25
Albrecht, B. BASIC FOR HOME COMPUTERS. A self teaching guide
£5.30
Shows you how to read, write and understand basic programming language used in the new personal size microcomputers.
Albrecht B. BASIC. A self teaching guide (2nd edition)
£5.30
Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special maths or science background
Alcock, D. ILLUSTRATING BASIC £2.60 This book presents a popular and widely available language called BASIC, and explains how to write simple programs
Altman, I. MICROPROCESSORS £10.65 Gives a general overview of the technology design ideas and explains practical applications.

Altman, L. APPLYING MICROPROCESSORS
 £12.00
 Follow volume which takes you into the second and third generation devices.
 Aspinall, D. INTRO TO MICROPRO- CESSORS Explains the characteristics of the component.

Barden, W. Z-80 MICROCOMPUTER HANDBOOK
£7.65
Barden, W. HOW TO BUY AND USE MINICOMPUTERS AND MICROCOMPUTERS £7.75
Discusses these smaller computers and shows how they can be used in a variety of practical and recreational tasks in the home or business.
Barden, W. HOW TO PROGRAM MICROCOMPUTERS
£7.00
This book explains assembly language programming of microcomputers based on the Intel 8080, Motorola MC6800 and MOS Technology MCS6502 microprocessor.

Barna, A. INTRODUCTION TO MICROCOMPUTERS AND MICROPROCESSORS £8.15

 Provides the basic knowledge required to understand microprocessor systems. Presents a fundamental discussion of many topics in both hardware and software.Bibbero, R. J. MICROPROCESSORS IN INSTRUMENTS AND CONTROL
£12.45
Introduces the background elements, paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.
Lancaster, D. TV TYPEWRITER COOK-
BOOK
An in-depth coverage of tv typewriters (tv's) the only truly low cost microcomputer and small display interface.
Lancaster, D. CHEAP VIDEO COOKBOOK £6.50
Lesea, A. MICROPROCESSOR INTERFACING TECHNIQUES £8.50 Leventhal. INTRO TO MICROPROCESSORS $\quad \mathrm{f} 16.70$ Lewis, T. G. MIND APPLIANCE HOME COMPUTER APPLICATIONS £4.75 Libes, S. SMALL COMPUTER SYSTEMS HANDBOOK £5.75
The Primer written for those new to the field of personal home computers.

Lippiatt. ARCHITECTURE OF SMALL COMPUTER SYSTEMS
 $£ 4.35$
 Moody, R. FIRST BOOK OF MICROCOMPUTERS
 £3.85

(the home computer owners best friend)
McGlynn, D. R. MICROPROCESSORS Technology, Architecture \& Applications
$£ 9.00$
This introduction to the 'computer-on-a-chip' provides a clear explanation of the important new device

McMurran, PROGRAMMING MICROPROCESSORS
 £5.50

A practical programming guide that includes architecture, arithmeticllogic operations, fixed and floating point computations, data exchange with peripheral devices computers and other programming aids

Monro, INTERACTIVE COMPUTING WITH BASIC
 £3.65
 Nagin, P. BASIC WITH STYLE $£ 4.00$
 Programming Proverbs. Principles of good programming with numerous examples to improve programming style and producing

Ogdin SOFTWARE DESIGN FOR MICROCOMPUTERS
 $£ 7.00$

Ogdin. MICROCOMPUTER DESIGN $£ 7.05$ Peatman, MICROCOMPUTER BASE DESIGN
£5.45

Peatman, J. B. MICROCOMPUTER BASED DESIGN
 £20.40

This book is intended for undergraduate courses on microprocessors.

Peckham, HANDS ON BASIC WITH A PET £8.70 Peckham, BASIC - A HANDS ON METHOD £6.85 Bursky, D. MICROCOMPUTER BOARD DATA MANUAL £5.40
Bursky, D. MICROPROCESSOR DATA
£5.40 Includes complete description of the processor. Support circuits, Architecture, Software, etc
Coan, J. S. BASIC BASIC £7.50
An introduction to computer programming in BASIC language.
Coan, J. S. ADVANCED BASIC £7.30 Applications and problems.
Ditlea, A SIMPLE GUIDE TO HOME COMPUTERS £4.00
Freiberger, S. CONSUMERS GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS £5.50
Frenzel, L. GETTING ACQUAINTED WITH MICROPROCESSORS
£7.10
This is an invaluable book for those who want to know more about hobby and personal computing
Gilmore, C. M. BEGINNERS GUIDE TO MICROPROCESSORS £4.75
Grossworth, BEGINNERS GUIDE TO HOME COMPUTERS £3.10
Gosling, R. E. BEGINNING BASIC £3.25
Introduces BASIC to first time users.
Graham, N. MICROPROCESSOR PROGRAMMIŃ FOR COMPUTER HOBBYISTS $£ 7.00$
Haviland, N. P. THE COMPULATOR BOOK £6.20
Building super calculators and minicomputer hardware with calculator chips.
Hartley, INTRODUCTION TO BASIC £2.40 Heiserman, D. L. MINIPROCESSORS FROM CALCULATORS TO COMPUTERS
£4.85
Hilburn, J. L. MICROCOMPUTERS, MICROPROCESSORS, HARDWARE, SOFTWARE AND APPLICATIONS £16.95 Complete and practical introduction to the design, programming operation, uses and maintenance of modern microprocessors, their integrated circuits and other components
Klingman, E. MICROPROCESSOR SYSTEMS DESIGN £16.95
Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation devices. No prior knowledge of microprocessors or microelectronics is required for the reader.
Kemeny, J. G. BASIC PROGRAMMING
£6.55
A basic text
Korn, G. A. MICROPROCESSOR AND SMALL DIGITAL COMPUTER SYSTEMS FOR ENGINERS AND SCIENTISTS $£ 21.00$
This book covers the types, languages, design software and applications of microprocessors

Duncan. MICROPROCESSOR SOFTWARE ENGINEERING £13.50
Rao, G. U. MICROPROCESSOR AND MICROPROCESSOR SYSTEMS £20.50 A completely up-to-date report on the state-of-the-art of microprocessors and microcomputers written by one of the leading experts
Rony, P. H. THE 8080A BUGBOOK: Microcomputer Interfacing \& Programming £8.15
The principles, concepts and applications of an 8 -bit microcomputer based on the 8080 microprocessor IU chip. The emphasis is on a computer as a controller
Scelbi. 6800 SOFTWARE GOURMET GUIDE AND COOKBOOK
£8.80 Scelbi. 8080 SOFTWARE GOURMET GUIDE AND COOKBOOK £8,80 Scelbi. UNDERSTANDING MICROCOMPUTERS
£8.60
Gives the fundamental concepts of virtually all microcomputers
Spencer, GAME PLAYING WITH BASIC £4.70 Schoman, K. THE BASIC WORKBOOK
£3.70
Creative techniques for beginning programmers.
Sirion, D. BASIC FROM THE GROUND UP £6.00 Soucek, B. MICROPROCESSORS AND MICROCOMPUTERS £19.00
Here is a description of the applications programming and interfacing techniques common to all microprocessors
Spracklen, D. SARGON £9.75
A computer chess program in Z-80 assembly language.
Titus, MICROCOMPUTER ANALOGUE CONVERTER $£ 7.45$
Titus, 8080/8085 SOFTWARE DESIGN $£ 7.45$
Tracton. 57 PRACTICAL PROGRAMS \& GAMES IN BASIC
£6.40
Programs for everything from Space war games to Blackjack
Waite. M. MICROCOMPUTER PRIMER £6.25

Waite, YOUR OWN COMPUTER
 £1.50

Introduces the beginner to the basic principles of the microcomputer
Ward. MICROPROCESSOR / MICROPROGRAMMING HANDBOOK £6.00 Authoritative practical guide to microprocessor construction programming and applications
Veronis. MICROPROCESSOR £12.85
Zaks, R. INTRODUCTION TO PERSONAL AND BUSINESS COMPUTING $£ 8.50$ Zaks, R. MICROPROCESSORS FROM CHIPS TO SYSTEMS £7.50 Note that all prices include postage and packing. Please make cheques, etc, payable to Computing Today Book Service (Payment in U.K. currency only please) and send to:

Computing Today Book Service,
P.O. Box 79, Maidenhead, Berks

Mr I．J．Nicolle

MISSILE SHOOT

The following program is designed to be run on the Mk14． The object of the game is to launch all eight missiles，if you launch a missile into a space already occupied by another one you simply shoot the first one down and replace it with the second．

OF1D controls the speed of the missiles，to start the prog－ ram enter OF12 GO and launch your missiles using the GO key．The program takes a total of 45 H bytes．

OF12	CA	OD	0F29	1 E		OF3E	E4	FF
OF14	35		OF2A	C8	E4	0F40	98	08
OF15	C4	00				OF42	C8	CE
OF17	31		OF2C	94	04	OF44	C0	CA
OF18	C4	02	OF2E			0F46	E4	80
0F1A	C8	F4	OF30	90	02	0F48	C8	C6
OF1C	C4	10	0F32	C4	00	OF4A	40	03
OF1E	C8	F1		C9		OF4C	FC	01
OF20	C4	00	OF34	C9		OF4E	94	D6
OF22	C8	EE	OF36	8 F	09	OF50	B8	BF
0F24	C4	08	0F38	CO	D8	0F52	98	C8
0F26	01		OF3A	9 C	OE	OF54	C4	07
0F27	CO	E7	OF3C	C1	80	OF56	90	CE

Stephen Draper

SAFEBREAK GAME

safebreak is a simple game of logic and skill which is played against the computer．The computer generates a random code consisting of five variables in the range 0 to 30 which must be found by asking the computer a limited number of allowable questions．Legal questions are statements（EG．A＝B）which the computer will answer either yes or no．Any statement which uses any of the comparitive operators $=,>$ or $<$ found）or any number in the range $+-32,767$ ，is allowable．However，only one com－ paritive operator may be used in any one statement：
$E G-A+B * 27=C$ is allowable，whereas
$A=B=C$ is not．
When the player is ready to make a guess he must tell the computer so when it asks and then type in what he thinks the variables（ $\mathrm{A}-\mathrm{E}$ ）are．

The game can be made easier or harder by altering the limit number of questions（Z）．

```
#EHTM.
```



```
10 LEET G=F*|!, 3!1
LE LET E:=F|l0, 品,
2G LET &आFN|M SN,
25 LET T,肘隹品)
```



```
35 IHF||T"LIFFICULTY FACTGF"?"
4E FOF R{=1 TO?
```


Paul B．Kaufman

SCAMPSCOPE ROUTINE

This program enables an Mk14 or similar SC／MP based system to perform as a simple Digital oscilloscope． Many recently published programs for SC／MP mach－ ines have tended to fall into one of two categories：1）Simple games，2）Hardware test routines．This program is intended to add a third category；Genuinely useful programs．

Program Function

Pointer Register 1 is initialised with the address of the dis－ play ，＇0D00（see listings）．The display position indicator is decremented（SHOW +1 ）and checked to see if it is -1 （＇FF），if it is，it is set to＇09，otherwise processing continues from SYNC．There is a short delay，then the Status Register is tested for Sense A going high．A＇square wave＇shaped character is stored in the display if Sense A is high，if not then a＇dash＇is displayed instead．The program then loops back to BEGIN and this processing is repeated．Thus while the display characters are being scanned from left to right， a high pulse at Sense A will cause a＇square wave＇to appear on the display．If the speed of scan matches the speed that Sense A is being toggled，the display will appear to stand still． The rate of scan is determined by the delay constant at SYNC，the lower the constant the faster is the scan．

Using The Program

Load the progratm into any free area of memory e．g．＇F12 and＇GO＇at this address．Immediately a line will show on the display，by increasing the value at SYNC the motion can be observed．If a logic pulse（max 5 V ）is sent to Sense A a square wave will be displayed for its duration．If a train of

```
501 IF OF="VES"家" THEN 1SE
```



```
    SER LET L & ENCMF
S5 FOF xi=1 TO L
```



```
80 NEVT %
SE FRTNT"INURLIT3 STHTENENT,TRY FGRIN"
30) 50TO 55
```



```
1|G LET F=|,ARL,餢
115 IF 5:&="=" THEN 13E
120 IF S%=""" THEN }15
1:5 IF S%="<<" THFH 1a%
136 ruTM SE
135 IF U=F THEN PRINT",NES":IOTM 1PG
140 FRINT"NO.
145 GOTO 170
1SG IF UNF THEN PRIHT"YES"*GOT\ 170
155 1.2OTC 1401
1EG IF UNF THEN PFINT"MES": JUTO 179
165 GOTO 149
1TO HEKT N
```



```
180 G0TO 220
1S5 INFUT"F"F
IGCO INFIIT "E"I
$95 \HFUTT"CH
```



```
255 INFW\T"E"!
210 IF SA=F, FNE:R=L,FHENC=H;FHDCD=Y)ANDCE=3) THEN 2SS
215 FFIHT"\|FOMU. 'びHU HANE LOST"
```



```
225 IF T事="悔S" THEN 1G
225 IF
23H ENG:
2ठ5 FPINT"EOPRELT, YCIL HFNEE WGNN"
245 50TO 220
FEH[N.
```

pulses is sent e.g. A square wave signal generator, the waveform can easily be observed up to about 2 kHz . If the cassette interface is used it is possible to play back a tape and watch the waveform as each character is read in. Thus the Scamposcope can be used as a very useful logic probe. The program can be easily modified to freeze the display after one pulse, or with a few diodes connected to Sense A and

E.A. Parr.

REM FOR TREKKIES

This modification to the Star Trek program (Oct '79) adds a command " 8 " to the command functions. It provides a history and map of the parts of the Galaxy explored to date. The display is an 8 by 8 array using the same format as command 2 (Long range scan) for explored regions. Unexplored regions are displayed as ***.

In the initial set up of the Galaxy 1000 is added to each sector. When a sector is entered or scanned the 1000 is removed from the corresponding array element. Print out of the galactic map then simply involves a simple test to see if the sector array element is or 1000 .

Program Modifications
$140 @(1)=X * 100+Y * 10+Z+1000$
200 IF @(Q) > 1000 @(Q)=@(Q)-1000
205 Z=@(Q)
$610 \mathrm{IF}(\mathrm{B}>8)+(\mathrm{B}<1)$ GOTO 600
2027 IF @(U) > 1000 @(U)=@(U)-1000
3070 GOSUB 8002
8000 GOTO 9000
$8002 \mathrm{Z}=\mathrm{H}-\mathrm{F}$
9000 PRINT "MAP OF EXPLORED GALAXY AT
STAR DATE", T
9010 FOR I=0 TO 7
9020 FOR J=0 TO 7
9030 IF @ $\left(8^{*}\right.$ I + J) >1000 PRINT " *** ", ;GOTO 9050 :- Prints *** if unexplored
9040 PRINT \#4, @(8*I+J) :- Prints data if explored
9050 NEXT J
9060 PRINT
9070 NEXT I
9080 GOTO 605
:- Initial set up increased by 1000
:- Sector has 1000 removed if entered
:- Displaced instruction
:- Command range increased 1 to 9
:- Sector has 1000 removed if scanned
:- Changed destination
:- Jump to History Print Out
:- Displaced instruction

Spread your wings and compute your way round the world with this program.

Despite the inroads recently made by small computers into the fields of synthesized music and voice recog. nition, this article is unrelated to these topics, and poses no threat to the record companies or Patsy Gallant whose song prompted the title. Instead this article describes a trigonometric calculation to determine the shortest distance between the two places in the title - or any other two places on the earth's surface. This will be of special interest to readers who fly their own aircraft, or who are planning to build their own intercontinental missiles.

The Program Options

The program DISTANCE is written in an elementary sub-set of BASIC which should be implmented without difficulty on all mainframes and microcomputers which support floating point BASIC. Informative messages are printed out at all stages to prompt the input of data, and as far as possible data are checked to ensure that they are physically possible.

First the program asks if you prefer to work in degrees, minutes and seconds, or in decimal degrees. Next you are asked for the name of the first place, followed by its latitude, and provided it is not on the equator whether it lies in the northern or southern hemisphere. Then, provided you have not chosen the North or South Pole you are asked for the longitude and if necessary whether this is east or west of the Greenwich meridian. The place name and position of the second place are then input in a similar manner.


```
At &RINT "rHCCRAM IT CALC
4% &R.NT
```



```
E| %R1NJ "LKSLMAL CEGREES
M. &F CS = "LM:" ThEA 1:QR
\10
```



```
4% PNIN} = TYPL NLHTH & & SULJH ZNL PNESE HETUHN
#NG ISMLT 65 NCHTH= THE? STM
*M 1S &% "SLLYH= THEN 26e
<ix FF1%% = RE-
- SA CCT0 19R
*ar let Liz. 11 = 
```



```
C. N-IN1 nTY+E EAST CK WEST% ANL PRESS KE%GRN"
if ! GS *WESII" THEN ARE
* if CS = "EAST" THEN 340
```



```
le pescos mfk-
```



```
Me民 If 1% = % THE
diR L&.f B
```

```
& LHE FACIX| = ATN|EGRH
```



```
47e LLIL * 60 - 9e
486 6070 528
490 LET E = 60 - ENCIDI + E2 
500 IF D1 : E2 ? E THEN 520
510 LLT L = 60 * (1HB-FNC(-D) - D21)
528 PHINT
53R PRINT - FRINT =ThE GREAT CIRCLE DISTANCE BETWEEN '% ES% - zNO
55B FHINT AS; - 1S": INT{D + .5); "NAUTICAL MILES
360 PRINT
5%0 FR:NT
580 PRINT "WOULD YCU LIKE ANOTHER RUN (YES/NC
598 INPUT OS
608 IF CS "YES" THEN $36
610 IF QS * "NC" THEN 64%
620 FRINT "REFLY "% QS; * NOT UNDERSTOOD. PI=TYFE YES CR NC.*
638 GOTO 598
```


The Theory Of Distance

The form of trigonometry familiar to most people involves right angled triangles in two dimensions. At least one published program for calculating distances uses this approach, but this takes scientific thinking back to the days of the ancient Greeks who believed that the earth was flat! Clearly this is an unacceptable approximation unless the distances involved are so small that the curvature of the earth has an insignificant effect. This program makes the assumption that the earth is spherical. Whilst it is known that the earth is slightly flattened at the poles (equatorial radius $=6378.2 \mathrm{~km}$ and polar radius $=6356.8 \mathrm{~km}$) the difference in radii of 21.4 km accounts for a maximum error of one third of one percent. Spherical trigonometry is more complicated, and using this the shortest distance between two points is no longer a straight line but is the distance along the great circle which passes through them. (A great circle is any circle round the earth whose centre is coincident with the centre of the earth). The equation used calculates the minimum angular separation of the two places measured from the centre of the earth. Since one minute of angle corresponds to one nautical mile, the angle can easily be converted into a 'distance'. Note that this method avoids even the maximum one third of a percent error mentioned above! The implication of this is that a nautical mile is not a constant, and an American nautical mile is about four feet smaller than a British one! The extreme distances are 6045.6 feet per minute of latitude at the equator, and 6108.1 feet at the poles.

The equation to calculate the distance is: distance $=60$ arc $\cos \left[\sin \theta_{1} \sin \theta_{2}+\cos \theta_{1} \cos \theta_{2} \cos \right.$ $\left.\left(\phi_{1}-\phi_{2}\right)\right]$ where θ_{1} and θ_{2} are the latitudes of places one and two respectively and ϕ_{2} and ϕ_{2} are their longitudes. The program empirically assigns + and - signs to latitudes which are north and south respectively, and to longitudes which are west and east respectively. Trigonometric functions provided on computers require the angles to be measured in radians, so the values of θ and ϕ are converted after input.

Since many compilers and interpreters do not provide an arc cos function, its use is avoided by using the art tan function which is generally available.

$$
\arccos x=\arctan \left[\frac{\sqrt{1-x^{2}}}{x}\right]
$$

In the program this is done by defining FNC, which also converts the result from radians to degrees.

Some interpreters - notably the SWTP 8K BASIC provide no inverse trigonometric functions. To implement the program on such a machine, the arc cosine function may be evaluated by summing the polynomial expression given below taking sufficient terms to provide the required accuracy.
$\arccos x=\frac{\pi}{2}-\left[x+\frac{1}{2 * 3} x^{3}+\frac{1 * 3}{2 * 4 * 5} x^{5}+\frac{1 * 3 * 5}{2 * 4 * 6 * 8 * 9}\right.$
$\left.x^{7}+\frac{1 * 3 * 5 * 7}{2 * 4 * 6 * 8 * 9}-x^{9}+\ldots\right]$
For angles greater than 45° the accuracy may be improved by evaluating arc $\sin x$ (by omitting $\pi / 2$ - from the above equation) and using $\cos ^{2}+\sin ^{2}=1$ hence $\arccos x=\arcsin$
$\left(\sqrt{1-x^{2}}\right)$.

Internal Checking

The program includes a number of checks. Latitudes outside the range of $0-90^{\circ}$ and longitudes outside the range $0-180^{\circ}$ are rejected with a message asking they be input correctly. If the units chosen are degrees, minutes and seconds then the degrees and minutes must be whole numbers, and the minutes and seconds must be in the range 0-60. If any of the replies to questions DMS/DD, NORTH/SOUTH, WEST/ EAST or YES/NO are mistyped, these are rejected and a suitable message requests their re-input. Internal checks are also performed to prevent failure through dividing by zero when attempting to take the arc cos of zero - corresponding to an angle of 90°. Evaluating the arc cos by using the arc tan may give rise to an angle outside the range $0-180^{\circ}$ if the value of x is negative, and to avoid this negative x values are handled differently.

Finally the program calculates and prints the distance between the two points in nautical miles, and asks whether you would like another run or wish to finish.


```
G4e INP: I x!
```



```
l:3e tk: M
HC4E NEJ
FRCGRAM TC CALCULATE THE SHCRIES'I CISTANCE EETWEEN TWC PCINTS
CN THE EAR'IH.
WCULE YCU LIKE TC WCRK IN EEGREES, MINUTES ANE SECCNDS OR
CECIMAL EEGREES. TYPE [MS OR DE ANL PRESS RETURN.
? DMS
IYPE IN THE NAME OF PLACE I ANE PRESS RETURN.
: L.A.
IYPE IN IHE LATITLLEE OF L.A.
IYSE THE NLMEER CF LEGREES, A CCMMA, THE NUMEER OF MINUTES,
A CCMMA, ANL THE NLMEER CF SECCNDS THEN PRESS RETURN
? 33,5C, E
7YPE NCRTH OR SCUTH ANC FRESS RETURN
? NCRTH
ZYPE IN THE LONGITUDE OF L.A.
DEGREES,MINUTES,SECONCS
? 118,22,0
TYPE EAST OK WEST ANC PRESS RETURN
? WEST
TYPE IN THE NAME OF PLACE 2 ANC PFESS RETURN.
? NEW YCKK
IYPE IN THE LATITUCE CF NEW YCRK
CECREES,MINUTES,SECCNLS
? 4E, 45,0
TYPE NCRTH CR SCUTH ANC PRESS RETURN
& NCRTH
TYPE IN THE LCNGITUDE CF NEW YCRK
CECREES,MINUIES, SECCINLS
? 74,0,6
```


TRANJAM

 COMPONENTS AND SYSTEMS FROM TRANSAM COMPUTERS

FULL RANGE OF MICRO SUPPORT CHIPS - IN STOCK

Abstract

SN7alsoo SN74 SO

DPS-1 MAINFRAME
PASCAL SYSTEM

ITHACA
PASCALZ build your own Pascal Micro Sevelopmen
 using DPSI main frame. Supports K2. ASSEMBLE/Z and PASCAL/2 on $8^{\prime \prime}$ disk

S100 BOARDS
8K Static RAM board (450 ns) 8K Static RAM board (250 £123.75

Z80 cpu board (2 MHz) $\begin{array}{ll}280 \mathrm{cpu} \text { board }(2 \mathrm{MHz}) & £ 131.25 \\ Z 80 \mathrm{cpu} \text { board }(4 \mathrm{MHz}) & £ 153.75\end{array}$ 2708/2716 EPROM board £63.75 Prototype board (bare board) Video display board (64×16, 128U/LAscill bisk \quad f131.75 K2 disk operating system $£ 56.25$ ASSEMBLE/Z Macro Assm PASCAL/Z compiler £131.25

WE STOCK THE FULL RANGE OF S100 CARDS AND ACCESSORIES

CRYSTALS	4 MHZ	2.10	F8 (3850)	9.50	
$100 \mathrm{~K} \quad 3.00$	4.43M	1.00	8080A	6.33	-
200K 3.70	5 MHZ	2.70	6809	24.00	
1 MHZ 3.60	6 MHZ	2.70	280	8.00	
1008K 3.50	7 MHZ	2.70	Z80A	15.00	
1843 K 3.00	7168 M	2.50	8085A	12.95	
${ }_{2} \mathrm{MHZ} 1.50$	8 MHZ	2.70	6502	8.00	
2457 K 3276 K 2.05	10 MHZ	2.70	SCMP 11	10.00	\%
3276K 2.70	107M	2.70	6802	13.95	

[^0]

CP/M

AVAILABLE NOW FOR TRITON

Disk operating system complete with text editor assembler, debugger, system utilities and complete file management. Makes Triton fully CP/M compatible and able to run CP/M based software. Triton will support up to four 51 or 8 drives single or double density full CP/M software user group facilities available. SAE for details.

TCLPASCAL CP/MCOMPATIBLE

 A standard Pascal Compiler available on a resident (20K) EPROM based configuration* or available to run under CP/M on $8^{\prime \prime}$ Disk plus documentationCP:M version $£ 90$ -- P.O.A.

MULTIWAY CONNECTORS

CATALOGUE Nank at initid 1980

Visit our Showroom soo

NASCOM COLOUR GRAPHICS BOARD

only $\mathbf{£ 2 2 . 5 0}$ in kit form

*Runs on minimum Nascom under T2, T4 or B-Bug.
*Genuine PAL encoder.
*8 background and 8 foreground colours.
*3072 addressable colour cells.
*Alpha numerics and colour graphics can be mixed.
*Simple to build, connect and implement.
*Complete with construction and software notes.
For use with a standard unmodified colour TV.

Just send $£ 22.50$ inclusive for a complete kit to:

Zen is a complete system for the production and Assembly of Z8o code. Several User manual, a Symbol Sort and a complete Listing. Zen is designed with the small aystem in mind. It is fast, convenient and makes no speciat demands on the syslem consofe or cassette recorder.

* Full set of Editor commands, including string search.
- Nampact source files, no line numbers. Free format, no tabbing.
- Standard ZILOG syntax assembier, 4000 lines minute.
- Decimal, hex. octal constants \& command parameters.
- Expressions using math operators-add sub. mult div, AND,OR.
- Pseudo-ops for strings, bytes \& words.
- Symbols any length, symbol table easily extended
- OBJECT to casselt or memory. or printer
$工$ NASCOM 1 , origin $O C 50 H$
- Runf under Nasbug, etc in 3.5 k .
- Obiect to cassette in DUMP format.

STANDARD, origin 100 H

- Runs under any Monitor with character 100 .
- No speciat Terminal needed, CR only control character used.
- Object to cassetto in INTEL HEX tormat.
= Ths-80 LEVEL 11, origin 4300 H
- Inctudes MONITOR DEBUGGER superior to TBUG.
- All commande on one level, no reloading.
- SINGLE BYYE breakpoint.
- ALL Z 280 user registers visible.
- Runs in 4.5 K memory in Decimal, hex.octal or ASCII
- Object to cassette in LEVEL il format.

ZEN costs 514.50 inctusive of Carriage \& VAT. ZEN is BRITISH
distributor: NEWBEAR COMPUTER STORE 40 Bartholomew Street Newbury Berks.

We've pioneered the west!

We've opened up the west of London and if you're local to the
 Ealing area that can only be good news for you.
We stock all the big names - Commodore, PET, Apple and Nascom.

We have the knowledge and expertise to provide a software package or business system that's right for you plus a comprehensive maintenance and engineering back-up service.

Call in for more information or a demonstration.
(We also sell a wide range of tapes and books.)
Adda Computers, 17-19 The Broadway, Ealing, London W.5.
(between W.H. Smiths and Burtons)
Telephone 01-579 5845
Open 09.00-18.00 Monday to Friday;
10.00-16.00 Saturdays.
ādत̄ā

1 CLOCK RADIO

How about a round clock radio which can double as a very smart desk clock - as we can testify!
To time, rotate one end of the cylinder to display the frequency selected. Most of the functions are controlled by a push-button panel and the display is a large, clear LCD affair.
Made by Hanimex, the battery clock radio comes in white, white or white. It will lull you to sleep and then turn itself off an hour later and waken you to the sound of Radio 1 , or music if you prefer.

2 DIGITAL ALARM

This mains-only Hanimex alarm has a large 12 -hour display incorporating AM/PM and alarm set indicators. You can have a dim or bright display at the touch of a switch. Fast and slow setting buttons make time setting simplicity itself. You can forget about knocking these accidentally in the morning scramble to turn off the alarm, as a locking switch is fitted under the clock. A 9 -minute snooze switch completes the list of all mod. clock cons.

To: CLOCK RADIO offer CT Magazine, 145 Charing Cross Road London, WC2H OEE

Name
Address

3 LCD CHRONO

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed.
The LCD display shows seconds as well as hours and minutes. Press a button and you get the date and day of the week.
Press another button and you have an accurate stopwatch with hundredths of seconds displayed, giving the time up to an hour. There's a lap time facility, too - and of course a back light.

To: DIGITAL ALARM offer
CT Magazine, 145 Charing Cross Road London, WC2H OEE

$£ 10.60$

Name
Address

4 LCD ALARM CHRONO

This is no ordinary watch. It's a slim, multi-function, dual time LCD alarm chronograph.
This model will show hours, minutes, seconds, date, day of the week, stopwatch, split time, alarm and alternate dual time zone not all at once of course. There's a night light, too.
Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The alarm is beefy enough to wake you up in the morning and get you to work on time (or wake you up when it's time to go home).

To: LCD WATCH offer
CT Magazine, 145 Charing Cross Road London, WC2H OEE
$£ 11.95$
Name
Address

The first part of our new series on connecting your machine to the outside world

In this series we are looking at various practical ways of interfacing a simple microprocessor system, such as Acorn or the Mk-14, with other electronic devices and with the environment in general. Emphasis is on applications in the home and office. Interfacing concerns both software and hardware. For the software enthusiast, who knows only a little about electronics, the series includes full constructional details of the interfaces and suggests how they can be used. For the hardware expert, the series explains in full the short simple programs needed to operate the interfaces, and suggests how to modify the programs to suit individual circumstances.

Outputs To The World

The stock excuse for buying a microprocessor system is that 'it can be used to control the central heating' - implying that this will bring about enormous savings of fuel, easily covering the initial outlay on the system. Leaving aside the question as to whether anyone will be able to afford to run a central heating system at all if fuel prices continue to rise, there still remains the problem - how actually do you go about connecting an MPU to an oil-fired boiler? This is not a question that will be answered here - too much depends on the exact nature of your heating installation - but there are lots of other devices around the home that can easily be put under microprocessor control. When you have played around with the programs in the manufacturer's handbook and eventually have become bored with shooting down ducks, then is the time to make the system do something useful, for a change.

In order to do something useful the MPU must know when there is something useful to be done. It needs an input. This can be by way of the keyboard, as you enter instructions manually, or by an input interface which operates automatically. Several input interfaces will be described in later parts of this series, including interfaces responsive to electrical signals, to sound, to light intensity and to temperature. Having been informed that there is something useful to be done (such as 'turn on the porch light') the MPU must then have some means of taking the necessary action. It needs an output interface. This is the subject of this month's article.

LED Interface

This may seem somewhat trivial but, if you can get the MPU to turn on a LED, you are more than half-way toward getting it to turn on the porch light, the central heating boiler or even the Blackpool Illuminations. So let's keep to LEDs for the moment, for the LED interface illustrates the principles fully and it is preferable to work out programs first using the LED interface rather than have the house lights flashing on and off in apparently uncontrollable fashion. The interface has three LEDs (Fig.1), which can be all of the same colour or, if you prefer, can be red, yellow and green. A good programming exercise is to make them run through the trafficlights sequence. The board has room for more LEDs and other items that will be added at a later stage. Only one IC is required, the CD4050, hex non-inverting buffer. The LEDs can be driven direct from the outputs, without need of resistors. Power supply comes from the microprocessor board. Note that we are using only 3 of the 6 buffers, keep-
ing the other 3 in reserve for use later. In the meantime their inputs must be tied to the positive rail (or to the negative rail - but the main point is that they must not be left unconnected). The layout of the board is shown in Fig.2. It is preferable to use a socket so that a different IC could possibly be used later instead of the 4050 (with suitable changes in the wiring, of course). The 4050 is very unusual in that the positive supply goes to pin 1. Input to to the interface is by a 5 -pin PCB plug; a second plug is provided so that further devices can be connected. Then the LEDs indicate the state of each of the 3 output lines that are controlling the attached device. The components are restricted to the front left-hand region of the board so as to leave room for additions later.

Fig. 1. The circuit diagram for the LED port.
Fig. 2. The veroboard layout for the circuit.

Fig. 3. The edge connector terminations of the Mk 14.

Construction

The strip-board is cut as shown in Fig.2. Assembly presents no problems, except the usual ones of avoiding solder threads between adjacent strips and making sure that breaks in strips really are complete. A hair-thin connection left where there should be a break can be disastrous: in building the prototype a connection was left accidentally between pins 6 and 11, and LED 1 burnt out immediately power was applied! Casual inspection of the board with a lens had not shown up the defect, though really careful inspection after the blowout revealed the cause of the trouble. So inspect all soldering, breaks etc. with a lens, before applying power. LEDs must be mounted with their cathode pins to the OV rail (strip AA). In most types of LED this pin is the slightly shorter of the two; in other types the rim of the LEDs body is flattened on that side. Remember too to observe the usual precautions in handling the CMOS IC - this should be inserted after all other construction work has been completed.

Connection To The Microprocessor Board

The SC/MP MPU used in the Mk-14 has three 'flag' outputs that can be used directly; these are referred to as F0, F1 and F2. These are connected to 3 pads of the edge-connector strip at the top of the board (Fig.3). Connecting wires can be soldered directly to these pads, and to the 0 V pad. To obtain the 5 V supply, a wire is soldered to the 5 V rail; this runs down the left-hand side of the board (upper surface); close to the voltage regulator where there are some holes in the strip. A wire can be soldered into one of these holes, or you can insert and solder a terminal pin (same type as used for $0.1^{\prime \prime}$ stripboards) and solder the wire to this. The 5 wires $(0 \mathrm{~V}, \mathrm{~F} 0, \mathrm{~F} 1, \mathrm{~F} 2$ and +5 V) are then taken to a 5 -way socket to fit the plug on the interface board. Those who prefer not to make permanent connections to the microprocessor board may use an edge-connector for all except the +5 V connection and solder the connecting wires to the appropriate terminals.

I/O Device

Both Acorn and the Mk-14 use an Input/Output IC, the INS8154, to provide additional input and output lines. It also provides a useful addition to the memory space as an entirely independent function. The basic Mk-14 does not have this IC, but MPU flag outputs can be used for most of the simpler applications, and the SENSE A and SENSE B inputs are available for input interfacing. The I/O IC is purchased as an option and is well worthwhile for the greater scope it gives for control purposes. The basic Acorn already has an INS8154 on board but this is devoted to the tape interface. The 6502 MPU of the Acorn does not have any outputs such as 'flag' and 'sense' that may be used directly, so it is necessary to buy an INS8154 and insert this in the
socket provided (IC8). Pin connections from this are taken almost to the edge of the board, but not to the edge-connector. Fig. 4 shows where connections should be made.

Programming For Output

The kind of program used depends on whether we are using flag outputs (SC/MP) or the I/O device. We will consider each in turn. Programming flag outputs:- The flags are three locations in the status register of the MPU (Fig.5), and can be high (1) or low (0) depending on how they are set. Setting is simply a matter of loading accumulator with a byte in which there is a ' 1 ' for each flag that is to be high, and a ' 0 ' for each flag that is to be low. We then transfer the byte from accumulator to status register and the flags immediately assume the required state. Program A shows how this is done. You can alter byte 0F21 to determine which flags are to be set and which to be reset; for example, to set flags 0 and 2 (and thus light LEDs 0 and 2), alter the byte to ' 05 ' $(=0000$

Fig. 4. The connections required for the Acorn.
Do not solder wires to the edge connector pads.

MICROLINK

Fig. 5. The status register of a microprocessor. The flag locations are the three least significant bits.

Abstract

0101). A little experimenting in varying the program and seeing what happens at the LED interface will soon make the procedure clear. Later we shall see how to extend this switching to items a lot more powerful than LEDs - in fact, to any kind of electrically powered device. Once a flag has been set, it remains set until 'reset' button is pressed or the appropriate bit is made low (0) by programming. For example, if byte 0F21 of Program A is made ' 00 ', all flags are reset, and all LEDs go out. This leads us to Program B, in which a LED is turned on, left on for about a quarter of a second and then turned off again. The ability to flash a warning lamp or make a buzzer emit a string of bleeps is very useful in alarm systems. The program is a loop, causing continuous flashing (or bleeping). If you want just a single flash, change $0 F 2 A$ to ' 3 F '. The length of flash and the length of period between flashes can be adjusted by altering the value of bytes OF24 and 0F29 respectively.

Table 1: addressing the INS8154 1/O device (low byte: see text for high byte)

Operation	Location	Address (low)
CLEAR (or reset) single bit, to make it low (0)	Port A; lines A0 to A7 Port B: lines B0 to B7	00 to 07
SET single bit, to make it high (1)	Port A: lines A0 to A7 Port B: lines B0 to B7	10 to 17
PARALLEL (8-bit) setting or resetting	Port A	18 to 1F
Port B	20	
OUTPUT DEFINITION REGISTERS	Port A (0DA)	22

Programming The I/O Device

This has 16 lines each of which can be independently programmed to be either an input or output (but not both at the same time). When the system is reset, all lines become inputs. In the input condition, interface LEDs attached to the line glow slightly but are not fully on or off, so it is necessary to program their lines as outputs. This is done by sending a byte to one of the output definition registers. There are two of these; one deals with the group of 8 lines known as Port A (individual lines are numbered 0 to 7 , e.g. Ao, A1, A2. . . A7; the other deals with the remaining 8 lines known as Port B ($\mathrm{B} 0, \mathrm{~B} 1, \mathrm{~B} 2 \ldots \mathrm{~B}$). Our LED interface is connected to the Port B lines so we need to instruct output definition register $B(O D B)$ to make lines 0 to 2 act as outputs. We send a byte in which the bits corresponding to lines 0,1 and 2 are high (1) and the remainder low. Thus we send the byte 00000111 from the accumulator to ODB; in the Mk-14 0DB is at OA23 and in Acorn it is at 0923. Table 1 lists the other addresses of the I/O device, showing the low bytes only; the high bytes are 0A for Mk-14 and 09 for Acorn.

Having determined which lines are to be outputs, we next have to decide which outputs are to be high and which low. This is done very easily by simply sending any byte to the appropriate address. For example, to make bit B1 high, we use the instruction 'store (anything) at 0A19' (or 0919 in Acorn). To make bit B1 low again, we address the instruction to 0A09 (or 0909). At this stage it is worthwhile trying out these programs with the LED interface connected and see what happens when various bytes are altered. There are also procedures for reading the state of lines that are designated as input lines, but we will deal with this facility later, when we need to use it. Another variation in the use of the I/O device is to write (into outputs) or read (from inputs) all 8 bits of a port together. This is parallel operation, in contrast to the single-bit operation that we have just described. The first stage is as before - inform the output definition register whether lines are to be inputs or outputs, Programs F and G show what happen next. The required state of each of the three outputs is set up in a byte that is stored in the Port B register (at 0A21, 9021). When this is done all three outputs change together. Since microprocessors work exceedingly fast, Program E and Program G appear to have the same action, yet in fact while Program E changes each of the lamps in turn - though only a few microseconds apart - Program G changes them simultaneously. Although this may not make any visible difference in this demonstration, it could make a lot of difference in other applications. Furthermore, if we have to deal with all 8 lines, parallel operation requires far less program steps. It's a good idea to try running this program and make it flash other sequences that you can design. With the SC/MP flashing is done by extending Program F to set or reset the output bits, as was done in Program B.

Program G is unnecessarily long for the storing and loop-counting routines are repeated for each change of lights. These steps can be made a sub-routine, with a further jump to the WAIT subroutine in monitor - a nesting of subroutines one within the other. The result is that it requires only 5 bytes (LDA followed by JSR) to program a new change of lights, so that long and complex sequences can be programmed in a very small amount of memory, and it can handle up to 8 lines at once. Now is your change to progress from hum-drum traffic-light sequences to something more in the nature of disco-lighting!

MICROLINK

USE OUR "ORDER RING" LINES 01-8833705/2289 VAT INCLUSIVE PRICES. P\&P 25p

WE HAVE MOVED - COME AND SEE OUR NEW SHOP
COMPUKIT UK 101
Kit $£ \mathbf{2 5 1 . 8 5}$. Built $£ 303$ includes power supply

SUPERBOARD II

 only £216.20 available now
SORCERER

 PET, APPLE II also availableWe would like to wish all our customers a Merry Xmas and Happy New Year
Please note our new address from 10th December. 1979

COMPUSTAT

Continuous Stationery for the Micro Computer

All sizes of listing paper stocked.
Specialists in the preparation of Printed Continuous Stationery - Design Service available -

Listing paper \& OTC Stocked for the Anadex ($91 / 2^{\prime \prime}$) printer
Phone or write for a quotation to Miss Michael
01.5206038

63 ORFORD ROAD, LONDON, E17 9NJ.

KB 060 ASC II KEYBOARD

60 keys in stepped rows. Auto repeat function. UC and LC ASClI coded. Brand new, built and tested. Rigid construction. With mating connector.
£44.75 ($£ 53.19$ inc P \& P and VAT)

S.a.e. for data

TIMEDATA Ltd. 57 Swallowdale, Basildon, Essex

2708 PROMS

SURPLUS TO REQUIREMENTS
£7.00 each
Parts sent by return.
Programming service if required Please add V.A.T. (15%) and 30 p P \& P

Baringlock Ltd.
31, Ashdown Avenue, Saltdean, Brighton.
Tel. 32503 or 309980

STOP PRESS: Superboard Compatible
 COLOUR YOUR NASCOM!

DAZZLING COLOUR GRAPHICS FOR NASCOM 1

Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE: powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without expansion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other microprocessor systems - send us diagrams etc of your b \& w video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will transform your computer.

NOW AVAILABLE FOR LIMITED PERIOD AT

 Inclusive of VAT and postage.

Dower House, Billericay Road, visa Herongate, Brentwood, Essex CM13 3SD
Telephone: Brentwood (0277) 810244

P\&R Computer Shop

Teletypes ASR33	$\mathbf{£ 9 0} \mathbf{- \mathbf { 5 3 0 0 }}$
KSR	from $\mathbf{£ 6 0}$
VDU	$\mathbf{£ 2 3 0}$
IBM VDU's 2260 with keyboard	$\mathbf{£ 3 0}$
Paper tape punches	from $\mathbf{£ 6 0}$
Paper tape readers	from $\mathbf{£ 1 8}$
Five volt 6 amp power units	$\mathbf{£ 1 2 . 5 0}$
Keyboards	from $\mathbf{£ 5 . 0 0}$

All types of test equipment. Miscellaneous computer equipment, all sold as seen.

Phone Maldon (0621 57440)

P\&RComputer Shop

Salcott Mill, Goldhanger Road, Heybridge, Essex.

 Apple II comes to Scotland
 Why not call and see the fantastic Apple II the finest micro currently available. Demonstration without obligation.
 16 K add on (Max 2 giving 48 K total)
 High-speed serial I/F £110
 Parallel I/F
 Comms card
 Applesoft firmware card
 Centronics card with cable
 £132
 Hitachi 9 in. monitor £127.00
 Hitachi 12 in. monitor £187.00
 APPLE CLOCK BOARD - Real time clock with battery back
 up. 388 days by 1 ms intervals. £140

Pascal Language System now available for Apple II

Editor, Compiler, Relocatable Assembler, System Utilities, etc Price including Language Discs, 16 K Memory Card, Documentation £296.
Note: Integer Basic, Floating Point Basic, and Pascal all on Discs supplied with package.

STOP PRESS

SUPERCOLOUR FOR APPLE II. At last - top quality colour for your Apple. Brand new Supercolour board. Gives red, green, blue and sync, as totally independent TTL signals, thus eliminating all previous colour problems. The quality of colour using this method which drives the 3 colour guns of the CRT independently is fantastic. Colour of text, low res. graphics and high res. graphics can be switched separately by the user, e.g. green text. Complete with $14^{\prime \prime}$ Sony monitor and boards for Apple II. $£ 440$.

WALTERS DOLPHIN HIGH-SPEED PRINTER \qquad . $£ 595$ Intertube 2 VDU now in stock.

Software packages prepared by arrangement. For further details please write, phone or telex

All prices exclusive of VAT.

 44 ST. ANDREW'S SQUARE, GLASGOW G1 5PL
 041-552 6731

Tel. order welcome with Access and Barclaycard

Callers welcome

Now on Telex 777268. 24 Hours Service

Bogged down with a bug? Write a flowchart!

Deople who program generally tend to fall into one of two categories, those who use flowcharts and those who don't. I tend to write mine after the program and then correct the bugs, and I'm sure many of you do too! The techniques of flowcharting are of great benefit to those who like to tackle problems logically, they draw vast diagrams, test for all the possible quirks and then code up the result. The result of all this is usually a superb program, it never fails and is always late. The rest of us write and debug our efforts as we key them in, end up with programs that work, fail occasionally and are usually ready on time. In this article I hope to put across some of the ideas behind the writing of flowcharts and demonstrate their useful points.

The Simple Idea

A flowchart is defined as "A diagrammatic representation of a series of events, usually indicating the analysis or solution of a problem ${ }^{1}$." This is similar to, but not quite the same as an Algorithm, this is defined as "A defined process or set of rules for solving a given problem ${ }^{1}$." One usually starts with an algorithm, produces the flowchart and then codes the

Fig 1. The simplest flowchart format.

Fig 2. The standard
flowcharting symbols.

Fig 3. Figure 1 redrawn using the standard symbols.

Fig 4. An attempt to flowchart a more complex problem.
sort them out later is the usual reply, in fact it's quite good enough to write a program from. We will take a last look at this program flowchart before we move on, it can be rewritten into two parts, a Control section and a single subroutine sections of the task as subroutines with their own flowcharts one can quickly sort out complex problems, and even write and test the various routines on their own before fitting them into the complete program.

The Real World

Computers being what they are, logical, the previous attempts at flowcharting bear no relation to a true programmers flowchart. A typical example of such a beast can be seen in Fig.6. The task is to produce a set of arithmetic tables for any given number between 1 and 12. The diagram shows all the steps needed and you should be able to follow it through on your own, there are comments!

The ideal of every programmer is to produce not only the ultimate bomb proof program but also to have it lavishly documented. This is the breakpoint between professional programs for a software house, or indeed a magazine for publication, and hopefully payment. It is almost obligatory to include not only a flowchart but a complete description of just what it does. In a case such as this you will find that your first flowchart will be so scrawled on that you have to

Fig 5. Splitting the problem can often make life easier.
re-draw it and it is well worth investing in a stencil that gives the standard symbols. It is also essential to keep a duplicate set of all the documentation for security, if you lodge a sealed set with the bank you have got a handy piece of evidence in case anyone rips off your version of $\mathrm{S}^{* *}$ r $\mathrm{W}^{* *}$ s and starts selling it and not paying any royalties!

In Conclusion

If you are capable of determining the way you wish to solve any given problem, writing the algorithm, you are capable of producing a flowchart. They are useful for debugging programs but you will find that they soon become covered with modifications and have to be re-drawn. Their most useful function is as a piece of documentation, how often do you remember how a program worked after six months, and as a means of testing out sections of a program such as subroutines.

Flowcharts are not essential as some people would have you believe but they do bridge the gap between successful programs and those which work.

References

Both definitions ${ }^{1}$ are taken from The Dictionary of Data Processing from Newnes Butterworths so you can argue with them!

Most of the information in the natural world is analogue, this project makes it acceptable food for any micro.

The natural world is full of interesting information that simply cries out to be investigated by the microprocessor owner. This information, such as sound, pressure, temperature and light intensity is in the form of an analogue signal. This is obviously incompatible with the digital signals that a microprocessor requires and some form of conversion must be undertaken prior to the data processing. There are many commercial chips that perform this function, known as Analogue to Digital, and the chip used here was chosen simply because it is one that has been used many times before and is well understood. No printed circuit has been published for this project because of the wide variety of possible applications.

The Electronic Converter

Figure 1 shows the circuit of an analogue to digital converter controlled by a processor system which can convert any voltage between 0 and +2 V 5 to a binary number for use by the CPU. The converter IC (Ferranti ZN427) uses the successive approximation method to convert the analogue input signal into a digital 8 bit code in a time period equal to 9 clock pulses. With a clock input frequency of $500 \mathrm{kHz},(2 \mathrm{uS})$, a conversion cycle would take 18 uS . To start the conversion cycle the processor system connects a pulse of at least 500 nS duration to the SC input (which also resets the converter) and after a delay greater than the conversion time (generated by the program) the processor reads the data by connecting a high condition to the OE input which gates the encoded data to the data bus via the tri-state outputs. The converter also connects a high condition to the EOC output (End Of Conversion) when the data is ready to be read and this signal could be monitored by the CPU instead of using a delay period although this would require another input to the processor system.

The converter IC provides an accurate +2 V 5 reference voltage which can be used by the input circuitry, the analogue input signal should be designed to vary between 0 volts and the reference potential.

A Gaming Option

Figure 2 shows the circuit of a joystick control which has been used in conjunction with a processor system for TV games, VDU control, etc. The potential at the slider of each potentiometer varies depending on the position of the control. The processor gates each potentiometer in turn to the converter, stores their positions in digital form in memory and then processes the information as required. CMOS transmission gates are used to connect the potentiometers to the converter and these are enabled by addressable latches which are switched by the CPU under program control. The start conversion (SC) pulse can also be used to set the appropriate latch to connect the required potentiometer to the converter could be used to reset the latches (as shown) or the required latches could be reset by another output instruction via the
data bus which would allow the other latches to be used for other purposes. To read the value of the second potentiometer the process is repeated with the second latch being switched instead of the first. The sequence is repeated as often as is necessary depending on the required response time.

Capacitors C2 and C3 are provided to reduce "jitter" and the preset potentiometers can be used to adjust the 'zero' potential if the joystick potentiometers do not allow the slider potential to go to zero volts. A similar arrangement could also be used at the high voltage end of the potentiometers (i.e. connected to +5 volts) although the input voltage to the converter must not exceed 3 V 5 .

Hardware Options

The guaranteed maximum clock frequency is qutoed in the data sheet as 600 kHz (1u6 S) although the converter will work at higher frequencies at a slightly reduced accuracy.

For a single voltage supply system the negative poten-

PARTS LIST

	SEMICONDUCTORS
IC1	ZN427
IC2	CD4066
IC3	CD4099
IC4	CD4069
Q1	ZTX510
Q2	ZTX310
D1,2	1N914

	RESISTORS
R1	390 R
R2	4 k 0
R3	1 k 8
R4	6 k 8
R5	15 k
R6	56 k
R7	82 k
RV1,2	100 k
RV3,4	2 k 0
C1	CAPACITORS
C2,3	1 u Electrolytic
C4	100 n
C5	680 p Electrolytic
C6	6 u 8 Electrolytic

tial for the Rext input can be provided from the positive 5 volt supply using the diode pump circuit of Fig. 3 that is published in the Ferranti data sheet. Since the negative supply current is only in the order of $25-150 \mathrm{uA}$, this circuit could be used to power several converters.

The data sheet also states that the positive going edge of the SC pulse should not occur within 200 nS of an active clock pulse edge and that the first negative going edge of the clock pulse after the SC pulse should not occur until at least $1 u 5 \mathrm{~S}$ after the negative going edge of the SC pulse. Other
input configurations are also shown in the data sheet together with timing diagrams, suggested circuits, etc.

The use of an analogue to digital converter with a microprocessor system allows a number of applications which would not otherwise be possible such as light level measurement, accurate temperature control or (with with addition of a suitable 'sample and hold' circuit) audio signals could be processed for use with speech recognition facilities.

The ZN427 is obtainable from Davian Electronics, 13 Deepdale Avenue, Oldham.

To co-incide with the start of our new series "Microlink" we took a look at a commercial interface unit for the PET.

Having exhausted your capabilities as an X-wing fighter pilot it is more than likely that you will wish to turn your programming skills to more useful ends. Whilst the ubiquitous central heating controller is not going to be the first thing that you tackle you will need at least some kind of communications interface to talk to the outside world with. We mentioned the Communicator in our News pages a couple of months back and decided to take a closer look at the beast.

The Heart Of The Matter

Inside the box one immediately finds a large quantity of fresh air, a single PCB of rather poor quality and not much else. The circuit is based around two Darlington pair transistor arrays, there are a grand total of two IC's containing seven arrays each. Twelve of these have been paralleled up to provide a drive capability of 1 A for six channels, the other two channels can drive 500 mA each. Each channel is monitored with an LED which lights for both input or output.

Power for the unit is provided by the user, a maximum of 24 volts, both to drive his external loads and to generate +5 volts internally. Loads or sources are simply connected onto the front panel connector strips between the common terminals and the required data line.

Talking Bi-directionally

The manual that we were supplied with was of a provisional nature but clearly explained the necessary programming techniques required. However, you can do a lot more with the device than the manual tells you as we soon found out. If you have the new PET manual, that's the one with the blue cover, pages 60 to 62 will tell you the rest but in brief you can do the following.

The parallel user port on the PET uses a VIA chip which can be programmed to perform a number of different functions. The available commands are given in Table 1. Having set up the parallel port all one has to do is PEEK or POKE the required location to input or output data, Table 2 gives the useable locations. Unfortunately the Communicator has not been equipped with any handshaking lines, probably for ease of general use but this does mean that your programs will tend to be based around subroutines for checking the status of the data lines.

Coded Requirements

No machine code routines were given in the manual but it should be possible using the Hex addresses in Table 2 to construct your own. It should also be remembered that because

PETCOMMUNICATION

you are using data lines the labelling on the front panel corre－ sponds not only to the actual line in use but also to the decimal code．For example if you wish to ouput a data byte to lines 1 and 7 all you have to do is to add the value of 21 to lines 1 and 7 all you have to do is to add the value of 2^{1} to 2^{7} ，that＇s $2+128$ ，which gives 130 ．This value will set lines 1 and 7 on with all the rest off，easy isn＇t it！

We have given a couple of simple programs to check out the Communicator，you should be able to modify the basic ideas to suit your specific requirements．

Conclusions

The Communicator certainly does what it is supposed to with the minimum of hassie to the user，but it can do more than the manual says．Our main criticism is the fact that for a grand total of $£ 92.85$ one would expect to get considerably more than this．After all the CMC adaptor for an RS 232 printer，or its 3D equivalent，both of which we have looked at，only cost a few pounds more．A case of overpricing by our standards．Mektronic Consultants can be found at Linden House， 116 Rectory Lane，Prestwich，Manchester．

Command Statement	Binary Representation	Lines	Mode	
OKE 59459，255	1111111111	PA0－7	Output	
OKE 59459，0	00000000	PA0－7	Input	
			PA0－3	Input
			PA4－7	Output

Table 1．POKE commands for setting up the parallel user port．

Decimal	Hexa－ Decimal	Addressed Location
59456	E840	Output register for I／O port B． 59457
59458	E841	Output register for I／O port A with handshaking．
59459	E842	I／O Port B Data Direction register．
59471	E843	I／O Port A Data Direction register．
E84F	Output register for I／O Port A， without handshaking．	

Table 2．Locations for the port registers．


```
LQ FEN UUTF|T CH||HEL. TEST
2g FOHE 594Eg, 2EE
TO FOKE 5G457.E
AE TOFT=1 TO 2Em
GN FOkE EOAET
G0 Fi= [=1 T0 15Gn|ENT [
T且 N&",
SOTOTO SE
```

Program to test out all the output channels sequentially．

```
g日 Fen *HFUT EHF|NEL TEST
    10, FC&E EG4=%,0
```



```
    12E TF I&1 THEN I星
    ABGFETMT I
    14g FOf D=1 TG 15ga|ENT D
    150 GO"O 110
```

FER日,

Program to check out all the input channels sequentially．

INSTANT SOFTWARE

CT Software is a unique service that we offer to our readers. Each program comes on a high quality tape packaged with full documentation.

Read down the list of titles-you'll find a few suprises and some things for which you have offered sacrifices on a stone at dawn before now. All are checked and fully quaranteed, any complaints and we'll replace by return of post.

We think this is a revolution in reader service and one that will change the way you use your computer. So why not try us out ?

All orders and enquiries to:-CT software, 4 Morgan Street, London E3 5AB.

All programs except 0013 R are $£ 6.75$.

TRS 80 Level 1

BUSINESS PACKAGE I Keep the books for a small business with your TRS-80 Level I 4 K . The six programs included are:

General Information - The instructions for using the package.

Fixed Asset Control - This will give you a list of your fixed assets and term depreciation.

Detail Input - This program lets you create and record your general ledger on tape for fast access.

Month and Year to Date Merge - This program will take your monthly ledger data and give you a year to date ledger.

Profit and Loss - With this program you can quickly get trial balance and profit and loss statements.

Year End Balance - This program will combine all your data from the profit and loss statements into a year end balance sheet.
With this package, you can make your TRS80 a working partner.
Order Code. 0017R
PERSONAL FINANCE I Let your TRS 80 handle all the tedious details the next time you figure your finances:

Personal Finance I - With this program you can control your incoming and outgoing expenses.

Checkbook - Your TRS-80 can balance your checkbook and keep a detailed list of expenses for tax time.

This handy financial control package for the home requires only a TRS-80 Level I 4 K . Order No. 0027R 5.75.

Level 1\&2

AIR FLIGHT SIMULATION Turn your TRS. 80 into an airplane, You can practice takeoffs and landings wiht the benefit of full instrumentation. This one-player simulation requires a TRS- 80 Level | 4 K , Level II 16 K . Order No. 0002R
SPACE TREK II rrotect the quadrant from the invading Klingon warships. The Enterprise is equipped with phasers, photon torpedoes, impulse power, and warp drive. It's you alone and your TRS-80 Level I 4K, Level II 16K against the enemy. Order No. 0002R
SANTA PARAVIA AND FIUMACCIO Become the ruler of a medieval city-state as you struggle to create a kingdom. Up to six play. ers can compete to see who will become the King or Queen first. This program requires a 16K TRS 80 Level I \& II. Order No. 0043R

ELECTRONICS I This package will not only calculate the component values for you, but will also draw a schematic diagram, too. You'll need a TRS-80 Level | 4 K , Level II 16 K to use:

Tuned Circuits and Coil Winding Design tuned circuits without resorting to cumbersome tables and calculations.

555 Timer Circuits - Quickly design astable or monostable timing circuits using this popular IC.

LM 381 Preamp Design - Design IC pre-
amps with this low-noise integrated circuit. This package will reduce your designing time and let you build those circuits fast. Order No. 0008R
HAM PACKAGE I This versatile package lets you solve many of the commonly encountered problems in electtronics design. With your Level I 4 K or Level II 16 K TRS-80, you have a choice of:

Basic Electronics with Voltage Divider Solve problems involving Ohm's Law, voltage dividers, and RC time constants.

Dipole and Yagi Antennas - Design antennas easily, without tedious calculations. This is the perfect package for any ham or technician. Order No. 0007 R

Level 2

TRS-80 UTILITY I Ever wonder how some programmers give their programs that professional look? Instant Software has the answer with the TRS-80 Utility I package. Included are:

RENUM - Now you can easily renumber any Level II program to make room for modification, or to clean up the listing.

DUPLIK - This program will let you duplicate any BASIC, assembler, or machinelanguage program, verify the data, merge two or more programs into one data block, and even copy Level I programs on a Level II machine. For TRS 80 Level II 16K. Order No. 0081 R
TRS-80 UTILITY 2 Let Instant Software change the drudgery of editing your programs
into a quick, easy job. Included in this pack age are:

CFETCH - Search through any Level II program tape and get the file names for all the programs. You can also merge BASIC programs, with consecutive line numbers, into one program.

CWRITE - Combine subroutines, that work in different memory locations into one program. This works with BASIC or machinelanguage programs and gives you a general checksum.
This package is just the thing for your TRS80 Level II 16K. Order No. 0076 R
SPACE TREK IV Trade or wage war on 3 planetary scale. This package includes:

Stellar Wars - Engage and destroy Tie fighters in vour attack on the Death Star. For one player.

Population Simulation - A two-player game where you control the economy of two neighbouring planets.
You decide, guns or butter, with your TRS-80 Level II 16K. Order No. 0034R
RAMROM PATROL/TIE FIGH) ER/KLINGON CAPTURE Buck Rogers never had it so good. Engage in extraterrestrial warfare with:

Ramrom Patrol - Destroy the Ramron ships before they capture you.

Tie Fighter - Destroy the enemey Tie fighters and become a hero of the rebellion.

Klingon Capture - You must capture the Klingon ship intact. It's you and your TRS-80 Level 1116 K battling across the galaxy. Order No. 0028 R
CARDS This one-player package will let you play cards with your TRS-80 - talk about a poker face!

Draw and Stud Poker - These two programs will keep your game sharp.

No-Trump Bridge - Play this popular game with your computer and develop your strategy.
This package's name says it all. Requires a TRS-80 Level II 16K. Order No. 0063R

HOUSEHOLD ACCOUNTANT Let your TRS-80 help you out with many of your daily household calculations. Save time and money with these fine programs:

Budget and Expense Analysis - You can change budgeting into a more pleasant job with this program. With nine sections for income and expenses and the option for oneand three-month review or year totals, you can see where your money is going.

Life Insurance Cost Comparison - Compare the cost of various life insurance policies. Find out the difference in price between term and whole life. This program can store and display up to six different results.

Datebook - Record all those important dates in your life for fast, easy access. The program has all major holidays already included.
All you need is TRS 80 Level If 16 K . Order No. 0069 R
FINANCIAL ASSISTANT Compute the fig* ures for a wide variety of business needs. Included are:

Depreciation - This program lets you figure depreciation on equipment in five different ways.

Loan Amortization Schedule - Merely enter a few essential factors, and your TRS 80 will display a complete breakdown of all costs and schedules of payment for any loan.

Financier - This program performs thirteen common financial calculations. Easily handles calculations on investments, depreciation, and loans.

1\% Forecasting - Use this simple program
to forecast sales, expenses, or any other historical data series
All you need is a TRS 80 Level II 16K. Order No. 0072R

PET

CASINO I These two programs are so good, you can use them to check out and debug your own gambling system!

Roulette - Pick your number and place your bet with the computer version of this casino game. For one player.

Blackjack - Try out this version of the popular card game before you go out and risk your money on your own "surefire" system. For one player.
This package requires a PET with 8 K . Order No. 0014P
CASINO II This craps program is so good, it's the next best thing to being in Las Vegas or Atlantic City. It will not only play the game with you, but also will teach you how to play the odds and make the best bets. A one player game, it requires a PET 8K. Order No. 0015P

CHECKERS/BACCARAT Play two old favourites with your PET.

Checkers - Let your PET be your everready opponent in this computer-based checkers program.

Baccarat - You have both Casino- and Blackjack-style games in this realistic program.
Your PET with 8 K will offer challenging play anytime you want. Order No. 0022P
MIMIC Test your memory and reflexes with the five different versions of this game. You must match the sequence and location of sig. nals displayed by your PET. This one-player program includes optional sound effects with the PET 8K. Order No. 0039P
TREK-X Command the Enterprise as you scour the quadrant for enemy warships. This package not only has superb graphics, but also includes programming for optional sound effects. A one-player game for the PET 8K. Order No. 0032P
TURF AND TARGET Whether on the field or in the air, you'll have fun with Turf and Target package. Included are:

Quarterback - You're the quarterback as you try to get the pigskin over the goal line. You can pass, punt, hand off, and see the results of your play using the PET's superb graphics.

Soccer II - Play the fast-action game of soccer with four playing options. The computer can play itself, play a single player, two players with computer assistance, and two players without help.

Shoot - You're the hunter as you try to shoot the bird out of the air. The PET will keep score.

Target - Use the numeric keypad to shoot your puck into the hom position as fast as you can.
To run and score all you'll need is a PET with 8K. Order No. 0097P
ARCADE I This package combines an exciting outdoors sport with one of America's most popular indoor sports:

Kite Fight - It's a national sport in India. After you and a friend have spent several hours manoeuvering your kites across the screen of your PET, you'll know why!

Pinball - By far the finest use of the PET's exceptional graphics capabilities we've
ever seen, and a heck of a lot of fun to play to boot.
Requires an 8K PET. Order No. 0074P
ARCADE II One challenging memory game and two fast-paced action games make this one package the whole family will enjoy for some time to come. Package includes:

UFO - Catch the elusive UFO before it hits the ground!

Hit - Better than a skeet shoot. The target remains stationary, but you're moving all over the place.

Blockade - A two-player game that combines strategy and fast reflexes.
Requires 8 K PET. Order No. 0045 P
DUNGEON OF DEATH Battle evil denons, cast magic spells, and accumulate great wealth as you search for the Holy Grail. You'll have to descend into the Dungeon of Death and grope through the suffocating darkness. If you survive, glory and treasure are yours. For the PET 8K. Order No. 0064 P

Apple

MATH TUTOR I Parents, teachers, students, now you can turn your Apple computer into a mathematics tutor. Your children or students can begin to enjoy their math lessons with these programs:

Hanging - Perfect your skill with decimal numbers while you try to cheat the hangman.

Spellbinder - Cast spells against a competing magician as you practice working with fractions.

Whole Space - While you exercise your skill at using whole numbers your ship attacks the enemy planet and destroys alien spacecraft.
All programs have varying levels of difficulty. All you need is Applesoft II with your Apple II 24 K . Order No. 0073A
MATH TUTOR II Your Apple computer can go beyond game playif, , and become a mathematics tutor for your children. Using the technique of immediate positive reinforcement, you can make math fun with

Car Jump - Reinforce the concept of calculating area while having fun making your car jump over the ramps.

Robot Duel - Practice figuring volumes of various containers while your robot fights against the computer's mechanical man.

Sub Attack - Take the mystery out of working with percentages as your submarine sneaks into the harbor and destroys the enemy fleet
All you need is Applesoft II with your Apple II and 20K. Order No. 0098 A
GOLF Without leaving the comfort of your chair, you can enjoy a computerized 18 holes of golf with a complete choice of clubs and shooting angles. You need never cancel this game because of rain. One or two players can enjoy this game on the Apple with Applesoft 11 and 20K. Order No. 0018A
BOWLING/TRILOGY Enjoy two of America's favorite games transformed into programs for your Apple:

Bowling - Up to four players can bowl while the Apple sets up the pins and keeps score. Requires Applesoft II.

Trilogy - This program can be anything from a simple game of tic-tac-toe to an exercise in deductive logic. For one player.
This fun-filled package requires an Apple with 20K. Order No. 0040A

Add text to your program with this simple idea.

Films have trailers, TV programmes have them, your programs can have them as well. Your trailers will not, of course, proclaim how earth-shattering the program that follows is but will screen the vital information that almost every program needs for execution: information such as the range of memory used, the memory location for execution, how to end the program, what key (if any) has been allocated a special task, and so on.

I accept that - being the good lads we all undoubtedly are - this information is already filed neatly away with the program listing!

Information For Free

But (come on, admit it!) isn't it an awful bind to go rooting for this file? Especially when everything else we need is already on the cassette label. Even if we have a dozen cassettes full of programs it doesn't take more than a few seconds to identify the cassette we need and then locate our program on it.

How convenient, to say the very least, if that same cassette could be loaded with the file's vital information about the program and display it on the screen. These trailers do just that.

Before you start moaning and groaning that programming text is tedious and uses acres of precious memory, let me say right now that this method doesn't. You'll know that when your NASCOM is idling - that is, when not actually executing a program or command - anything you type on the keyboard prints out along the bottom line of the screen. What's more, when you get to the end of a line it is scrolled up automatically and you can begin typing your second line, and so on. This is how we get our trailer on the screen. Then we tape the VDU RAM that contains it. So we don't employ any user RAM. Memory-wise our trailer is for free!

As a matter of fact, it isn't quite such a doddle as that. For one thing, we are restricted to 4 lines of the screen (184 characters, actually). For another, we must adopt a simple but rigid drill until the routine becomes automatic. These restrictions are imposed by the scolling up that takes place during the operation of the Write (W) and Read (R) Commands. For the same reason it is not possible to use the

Dump (D) and Load (L) Commands, so these trailers are only possible with the B-Bug and T4 Monitors. (It should also work with NAS-SYS.)

How It's Done

Now for the nitty gritty: the drill. The first requirement is that we must write down our trailer on paper before we attempt to put it on the screen. So we need a representation, a map, of four lines of the screen - i.e. a 4 -line grid, each line being 48 squares long:

The prompt sign $(>)$ will occupy the first space, so that is not available. We shall eventually press the 'New Line' (NL) key and the moment we do the Monitor will do its damnedest to interpret as a command any character right next to the prompt. To remove this temptation we'll never use that space. And to remove the possibility of any other untoward happenings we'll not use the first two spaces of any other line, either. So let's block these out, as follows, as soon as we've drawn the grid. The 'equals' sign $(=)$ denotes, "Press Space Bar".

The final two points of the drill are probably most important:
. . . we must end every line, except the last, with a
character or space bar so that the line is scrolled up automatically.
. . the last line on the other hand must be terminated by pressing NL
We are now ready to write our trailer down on the grid and here is an example:

Type the trailer on the screen, being very careful that your 4 lines end up on the screen exactly as they are written on the grid.

Storing The Trailer

Now it only remains to transfer the trailer from the screen to the tape. Enter the Command 'WA4A B3A', start the cassette recording and press NL. This command is always the same for every 4 -line trailer and, provided we have adhered to the recommended drill, takes account of all the scrolling up. Immediately after this we tape the program itself, of course.

When we want to read the trailer and its associated program don't forget to apply the 'R' Command twice once for the trailer and, immediately afterwards, for the program itself.

You'll soon find the drill becomes automatic and you can stop writing the trailer down. But until then please write down your trailers in the format given. Mind you, if you
don't you can have a hell of a lot of fun. You'd never believe the words the Monitor interprets as commands when they immediately follow the prompt. You can fill the screen with such starbursts, star wars, snowstorms and alien encounters of a firework kind that you'll think you are designing backgrounds for the next space spectacular, no doubt to be called 'Son of Alien'.

Getting More For Your Money

I've stressed that we are restricted to 4 lines on the screen. Certainly they should be more than enough for most trailers. But we can actually have 8 lines if we really need them, although this is the absolute maximum. Two modifications to our drill become necessary:
\ldots we type and record 9 lines, not 8 , but the 5 th line will be lost, so fill it with garbage or spaces.
. . . the Write Command becomes W90A B3A'
The same warnings about line endings (including the 5th) apply as for 4 -liners.

A little bonus: as soon as you've set the ' R ' Command going, out marches your trailer from the wings across the screen, letter by letter, with a staccato precision Busby Berkeley couldn't better. All this whilst the cassette is still turning. In other words, it's an instant indication of whether the 'W' and ' R ' Commands are working. If no letters stride immediately across the screen then either they were not recorded correctly or are not being read correctly. Even if you don't want anything to do with program trailers this is therefore an instant, positive - and amusing - routine for testing Read and Write Commands.

AND SOME MORE BOOKS!

AND SOME MORE BOOKS!	
6800 Programming for Logic Design	c6.30
8080 Programming for Logic Design	c8.30
280 Programming for Logic Design	c6.30
More BASIC Computer Games	E5.50
BASIC Computer Games	c5.00
What To Do After You Hit Return	c8.95
8080 Galaxy Game	c5.95
SUPER.WUMPUS - A game in 6800 Assembler code and BASIC	£4.25
First Book of KIM	87.00
Computer Rage (A Board Game)	¢6.95
Artist and Computer	E3.95
How to Profit from Your Personal Computer	¢5.50
Games. Tricks and Puzzles for a Hand Calculator	12.49
Introduction to Personal and Business Computing	E4.95
Getting Involved with Your Own Computer	¢4.76
280 Instruction Handbook	2.95
8080 Programmers Pocket Guide	E1.95
8080 Hex Code Card	£1.95
8080 Octal Code Card	¢1.95
Best of BYTE	88.95
Scelby BYTE Primer	18.95
Best of Creative Computing Vol. 1	c8.95
Best of Creative Computing Vol. 2	¢6.95
Best of MICRO (lssues 1.6 of Micro Magazine)	c5.50
Z80 Assembly Language Programming	E6.45
6502 Assembly Language Programming	£6.45
Microcomputer Programming 6502 (by ZACS)	¢7.98
6502 Applications Book	67.95
8080 A 8085 Assembly Language Programming	¢6.45
6800 Assemblv Language Programming	c6.45
8080 Soltware Gourmet Guide and Cookbook	c6.96
6800 Sottware Gourmer Guide and Cookbook	C8.95
Programming the 6502 (by Foster)	¢8.75
6800 Tracer - An aid to 6800 Program Debugging	£3.95
Program Design	¢4.25
Programming Techniques: Simulation	£4.25
PIMs - A Database Management System	[5.95
SCELBAL High Level Language+Supplements BASEX - A Simple Language + compiler for the 8080	$\begin{array}{r} £ 15.00 \\ £ 5.50 \end{array}$

HOW TO ORDER: Send Cash or Credit Card No. to Room CT, L.P. Enterprises
8/11 Cambridge House, Cambridge Rd.
Barking, Essex. IG11 8NT. 01-591-6511
Orders or enquiries welcome
Send SAE for our complete range
of books, magazines and software

66
 The cheapest most advanced

 business Microcomputer"

ACTseries 800

The next generation computer system built in California by Computhink and backed by Britain's leading computing company, ACT.
The ACT Series 800 features lightening fast processing capabilities and unequalled data retrieval speed. It is upwardly compatible with the PET.
In addition to brilliant High Resolution Graphics the ACT Series 800 has the most advanced full screen data entry and editing capabilities evermade available on a micro-computer.

\qquad

Nebula fully integrated software packages written in Britain by ACT include Sales Ledger and Invoicing, Purchase Ledger, Payroll, Stock Control and Word Processing. Plus over fifty more program titles.
ACT 808 with 800,000 characters of on-line disk storage, £3,950 + VAT.
ACT 824 with 2,400,000 characters of on-line disk storage, $£ 4,950+$ VAT.

Prices correct at lime of going to press
PET is the trademark of Commodore

Radclyffe House.
66-68 Hagley Road,
Edgbaston,
Birmingham B16 8PF
Tel: 021-455 8686
Telex: 339396

LONDON

Lion House（Retail）Ltd．
227 Tottenham Court Road．London WI P 0HX
Tel．01－580 7383
THE SOUTH
Petalect Electronic Services
32 Chertsey Road．Woking．Surrey
Tel 04862－21776／23637
Business Electronics
Rownhams House．Rownhams．Southampton Tel：0703－734015

RUF Computers

System House．Victoria Way．Burgess Hill，W．Sussex
Tel 04446－45211
T \＆V Johnson（Microcomputers）Lidd．
165 London Road．Camberley．Surrey
Tel 0276－62506
South East Computers Ltd．
4 Castie Street．Hastings．Sussex
Tel：0424－440099

SOUTHEAST

Senodisk Ltd
34－36 St．Helens Road Westclift－on－Sea，Essex Tel：0702－352590
The Computerist（Prorole Ltd．）
642 London Road
Westcliff－on－Sea
Essex
Tel 0702－335298
SOUTH WEST
ACT Bristol Lid．
Graphic House．Telephone Avenue．Bristol BS1 4BS
Tel：0272－211733

EAST MIDLANDS

HB Computers
22 Newland Street．Kettering．Northants
Tel 0536－520910／8392

Lowe Electronics Ltd

Chesterfield Road．Matlock．Derbyshire DE4 3HE Tel 0629－2817／2430
Arden Data Processing Ltd．
Municipal Buildings，Charles Street．Leicester
Tel 0533－22255
Office Computer Techniques（Middlectron） Highcroft，Husbands Bosworth．Lutterworth．Leics

MMS（Steenmoor）Ltd．
26 Mill Street Bedford．Beds．
Tet 0234－40601
Caddis Computer Systems
72－74 Trinity Lane．Hinckly．Leics
Tel．0455－613544
A．J．R．（Otfice Equipment）Ltd．
5 Church Drive Daybrooke．Notlingham NE5 6JP Tel：0602－206647
Hallam Computer Systems
1 Berkeley Precinct． 451 Eccleshall Road
Sheffield S11 8PN
Tel：0742－663125
EAST ANGLIA
Sumlock Bondain（East Anglia）Ltd．
Grosvenor House． 32 Prince of Wales Road
Norwich．Nortolk
Tel 0603－26259
WEST MIDLANDS
Taylor Wilson Systems Ltd
Oakfield House．Station Road．Dorndge
W Midlands B 93 8HO
Tel 021－560619？
MERSEYSIDE
Stack Computer Services Ltd
290－298 Derby Road．Bootte．Merseyside L20 8LN
Tel 051－9335511
D A M．S（Office Equipment）Lid
30－36 Dale Street，Liverpool 2
Tel：051－227 330

Aughton Automation Lid

Woodward Road．Kirby．Liverpool
Tel 051－5486060
MANCHESTER
Cytek U．K．Lid
12 Exchange Hall．Com Exchange Bulding．
Manchester M4 3EY
Tel 061－832 7604

SCOTLAND

Robox Office Equipment Ltd．
Robox Office Equipment Ltd．
Glasgow G2 7PH
Tel 041－221540

In ETI，May 1976，an electronic game was described， which was based on the reflexes of two players．Here is a version for PET，for up to 5 players．The rules are held in lines 30 to 38 ．The＂light＂is graphic shift Q or W， these corresponding to on and off respectively．＂Too early＂， referred to in the rules，means＂before the light comes on＂．

Program Notes

1．In general，the formatting of the program lines is arranged， so as to occupy only one screen line．
2．The bracketed portions in the right column are commen－ tary only．
3．Line 520 will only ever execute if a player presses a key which has not been recorded in AS．If it is executed，player 5 （or the last entered player，if less than 5）will get the point or disqualification：－＂the honesty of the player is assumed＂． If you are playing with a bunch of cheats，then change this line to：
520 NEXT L\％；L\％＝0 and watch out for the result！
4．There are two problems，if the program is to be converted for a different system：
a．GET－some form of non－RETURN input is needed；
b．POKE the screen（lines 150，180）．The former of these could be omitted and the latter made into a print statement．
5．Location 33148 is row 10 column 20.

```
10 DINA= (5, 2), Fis:
```

20 POKE 5月4E3, 14: REM GOITO LOHEF CAEE
30 FRINT"Eriter" thie Flayer"झ risries."

-2 FRI忊"引F to E mas Fl ヨy. If picire trijn"
3F FRIMT"S Fls'y eriter it. t aftor the last.

SE FFIldT"If youd frejs a h.ey tivo ejrly."

3S FFIHT: FFIHT"The firet tG 10 wins."
40 FPIHT:F゚FIHT"F゚rese infl" key whan ready."
SG GET EF: IF E\&:=""GOTG EG
EG FFIHT"こ":FOKE SG4ES. 12:FEM IFFER CFIEE
30 FOF $H=1$ TO S: A:H:= N: NIENT H
16G FGF: $I=1$ TO E

13E HENT I
140 PEM 1 MAIH GFME FOLLCHIS
150 FFIHT"Z": FOME SO14S. ET:FCIF $K=1$ TOI

17D FFJNT"IAME STAFTTHG. . . . "
1FE IF FHLUTI)く, 2E GOTO 1TE:FEM [IELF
18 GET Z里:FOKE JO14S.E1

26a IF 二at="" ractr 24

2.5 ruTn 119
240 GOULE EOM

275 IF $A(\cdots)=15$ GOTO EG9
※SW JOTG 1TS
EGG: FIF: $L=1$ T

FIS HE:KT L: FITG E4O

E.451 FET!10N

E1G TJET FI: IF FE="" GOTCI 516

E
FFRHO:

CT took a course in sixteen bit technology at the Texas University. Did we pass with flying colours......

Tomewhat of an oddity this board. As you can see from the photographs, the most prominent feature is a calculator keyboard and display assembly mounted to the right of the main PCB. The pale disc is a piezo 'speaker' providing a sort of sound capability.

The TM 990/189 is one of the series from Texas based upon their unique TMS9980 (16-bit) MPU. It is designed to introduce a complete tyro to the art of assembly language programming and comes complete with a User Guide to the module, and a massive self-teach manual - some five hundred and seventy pages in all which begins with a run down of computer architecture and hopes to have the reader well into modular programming techniques by Chapter 8 .

A PSU is required to run the TM 990, and for $£ 67.82$ Texas will supply one. The specification required of the supply is +5 V at 2 A , and $+/-12 \mathrm{~V}$ at 0 A 5 or thereabouts.

We used the Texas supply for our review, simply because it saved us building one and we were eager to find out what power lay behind that bleak keyboard.

However we suspect that most of our readers would be able to provide their own for considerably less that $£ 67$. Check it before connecting, though, if you intend to follow this course of action through. Regulation should be $+1-5 \%$ of nominal.

All fairly standard stuff.
Texas have pulled a little string by fitting a cable - reversable
Fig 1. (Right) The CPU architecture of the TMS 9980A

M990/189 UNIVERSITY MODULE

Fig 2. The module PCB and wot's on it!
and idiot proof - with the same weird plug on both ends, that will connect up a TM 990 to their own PSU in a second, but which might cause a few hours wandering around to component shops, vaguely waving plugs in the air in the hope of acquiring a match.

If thine plug offends thee - cut it off and solder 'in' a more common item.

Of the Texas PSU, number TM 990/519, there is little to say it is superbly constructed, works perfectly and is overpriced. All in all a typical boring power supply!

On Board

The University module, with its 'software' costs a fulsome $£ 256$. As this is about $£ 80$ more than the likes of a Superboard II, with its BASIC and 8 K of user RAM, we are entitled to ask searching questions of the Texas package. For a start what do you get for your $£ 256$?

Well, as you can see from our photos, the PCB is well produced and beautifully constructed. Its contents consists ut:-

1. Alpha-numeric keyboard (45 keys)
2. Piezo-electric sound output device
3. TMS 9980A 16 bit MPU
4. 4 K ROM (expandable to 6 K)
5. 1 K RAM (expandable to 2 K)
6. 2 M clock circuitry
7. Cassette I/O
8. 16-bit programmable $1 / O$ and interrupt monitor (type TMS 9901)
9. LED display (seven segment)

Keyboard:- 45 keys with a 'shift' facility which allows for 87 ASClI characters to be input.

Fig 3. (Right) Block diagram of the Texas system.

Speaker:- under program control, operates on command. Has a limited sound range, but is a useful peripheral nonetheless.
ROM:- the on-board 4 K holds the UNIBUG monitor and 'symbolic assembler' as firmware. There is an expansion socket to hold a user programmed 2 K PROM.
Cassette Interface:- use of the TM 990/802 Software Development Board is possible with this, and the cassette $1 / O$ is compatible. There is space on PCB for a control relay to be mounted.
LED Display:- the main display shows nine characters out of the 64-character string, and can be shifted left or right to show any nine of the string without affecting store contents.

In addition there are four LEDs on board for general purpose monitoring of CRU, (Communications Register Unit) which allows for single bit I/O, (the CRU is internal to the TM 9980A) and program control monitoring. Three of the four LEDs are for monitoring specific functions (SHIFT etc) under UNIBUG control.

In addition to all this there's a very important little switch hidden away on the board labelled 'LOAD' which is a lot more use than simply loading onto TAPE. The switch generates a nonmaskable interrupt to the CPU. This causes discontinuation of execution of current program, and releases control to the UNIBUG monitor. Memory contents are not affected.

A sort of final overide command, which can be used to bring the CPU out of a loop or just generally make it listen to you a bit better! As this brings us around to the monitor, lets take a look at UNIBUG.

Monitoring Around

Table 1 gives the list of the commands available through UNIBUG. In the same EPROM lies the assembler used to provide the TM 990's basic (no pun intended) language. Since the 9980A is a 16 -bit beast, its instruction set is very powerful. In addition Texas architecture is somewhat different to that we are used to to put it mildly.

The TM 9980A has a 16 -bit CPU, but only an 8 -bit data bus. Thus it requires two read cycles to fetch a single-word instruction. This does limit the chip, although Texas claim the trade-off is a good one. We have our doubts.

Memory-to-memory is the phrase coined for the TMS 9980A architecture which allows multiple register files to be resident in memory, with a resulting drop in response time to interrupt commands. Up to 16 K of memory can be addressed and I / O is memory mapped.

Figure 3 is a block diagram of the TM 9980A. UNIBUG could not fail to be a good monitor given this kind of start of life and it was no disappointment. It confers upon the University Board an ease of use - even given the limited on board I/O - that is well suited to its intended purpose.

Putting It In

Programming the board is fairly simple. Upon power up the display shows 'CPU READY' and a simple RETurn command allows keyboard control. The UNIBUG commands then operate. Command ' M ' (memory inspect/change), for example, opens the specified location and displays the contents on the LEDs. It can then be changed.

Operating SPACE single steps into the next even number location. Since 16 -bit words are used and are organised as two consecutive 8 -bit bytes this should not surprise you. Both byte and word instructions are allowable, any byte at an even or odd address can be addressed by the different modes in the instruction set.

I don't wish to run through all the commands and their usages here, it would be pointless and not illuminating in the slightest. The sample program, given here, will illustrate the points necessary I believe. The program is to add 33_{10} to 15_{10} and display the result.

A Texas PSU. It is so efficient it's boring.

Does It Or Doesn't It?

It is not possible here to do more than simply scratch the surface of the TM 990 board, a detailed description would fill an issue all by itself. The important point, though, remains whether or not it fulfills its design aims and does it in a way which represents value for money to the purchaser.

The aim is to provide an introduction to the MPU technology and to open a door through which some hands-on experience can be gained for serious students. We suspect the pricing level is set thus in expectation of an industrial or academic purchaser rather than a home hobbvist.

The tuition manual is pretty good. Very American and a little vague who it is talking to sometimes, but very good nonetheless. The link to the TMS 990/189 is well forged, and the two complement each other well.

Drawbacks are few, but significant. For a start the keyboard does not have the SHIFTed designations marked on it, and they only exist at all on one page of the manual - incredible! Tsk tsk. Zero for usage there Texas.

The main drawback though, we feel, is simply the TMS 9980A itself. There is no doubt as to the power of this processor indeed it shows very clearly how far these components have come since their introduction - but in this context it may be too atypical to be generally useful. Use of the board certainly taught me a lot about use of that CPU, and 16 -bit hardware in general, but I feel it would be a difficult transition for a student to make from these giddy heights of flexibility and power down to the more usual 8 -bit 6502 s and the rest.

The TM 990/189 makes a superb evaluation kit though.

Summary

So that is it. A well constructed and thought out package with versatile on board I/O and a powerfu! processor. A board which makes an excellent tutorial tool - but only in teaching its own subject - the Texas Instruments CPUs. Fair enough, I suppose, but be

Input	Resutts	Paragraph
4	Assembler Execute	333
B	Assembler Exacule With Current Symbol Yable	334
c	CRU Inspect: Charige	33.5
0	Dumo Memory to Casseme	336
ε	Ekecute to Binakpoint	337
5	Status Register inspect Change	33.8
d	Jump to EPROM	339
2	Load Memory from Casserte	3310
M	Memory inspect Change	332
p	Programi Counter Inspect Change	3311
R	Workspace Register Inspect. Change	3312
S	Singie Step	3313
T	Tysewriter Mrogram	331
w	Workspace Pointer inspecti/Change	3314
Fies	New Line Requesi	3315

Fig 4. UNIBUG command set.

T M990/189 UNIVERSITY MODULE

Some of the software which arrived with the TM990/189
aware of the limitation. The tutorial manual is very good and possessed of only a few minor errors. These are two Fig 1-19s for example and no 1-29. Let he who is without printing error cast the first dictionary

The final question - value for money? I think not compared to what else is availabie for the price, but then educational courses are are always expensive. This one is good in its own way and in the end you must decide for yourself if it is worth your pounds.

Our thanks to the distributors, Celdis of $37 / 39$ Loverock Road, Reading, Berks RG3 1ED for loaning us the TM 990/189 and PSU for this article. All enquiries concerning the module should be addressed to them.

Nascom and Commodore Specialists

Business and Leisure Micro Computers, stockists of well known computer systems and micro processors B\&L Micros offer a user service which will be of special interest to the businessman as well as the hobbyist seeking a new and exciting challenge

A full range of micro computers and peripherals are available. whether buying or browsing we can give helpful and friendly advice.

Nascom 2 complete kit ex. stock $£ 295.00+$ VAT or fully built and tested $£ 335.00+$ VAT

Nascom 1 super new low prices $£ 125.00$ + VAT or fully built and tested $£ 140.00+$ VAT this has to be the best starting point for anyone interested in Micro Computing

We are now sole distributors for the Micro Type case for your Nascom $1 \& 2$, also stockists of the William Stuart colour graphics and full range of add ons
C

Business \& Leisure Micro Computers
16 The Square, Kenilworth, Warwickshire CV8 1EB. Tei: (0926) 512127
a. Problem

Write a program that will add 3310 and 1510 and display the answer.
b. Program Solution
LWPI 0300 Load immediate to wofkspace pointer
$L \quad 0.33 \quad$ Load R0 with first number (3310)

A $\quad 1.0 \quad$ Add, answer in R0 (memory address 30016)
XOP $\quad 0.10 \quad$ Display contents of RO
XOP $\quad 1,13$ Turn display on
c. Program

Address	Hex Contents
0200	$02 E 0$
0202	0300
0204	0200
0206	0021
0208	0201
O20A	000 F
020C	A001
O20E	$2 E 80$
0210	$2 F 41$

d. To enter the previous program

1. Apply power to the TM 990/189
2. The TM 990/189 will energize in a power up LOAD state and the display will show CPU READY

DISPLAY
ENTER
COMMENTS

CPU READY -		
?		UNIBUG commands can be entered now
	M	Memory Inspect/Change
PM		
	200	M. A. 0200
'M 200.		
	(Ret)	
$0200=x \times x x$		Current Contents M. A. 0200
	02E0	Enter New Contents
XXXX 02E0.		
	(Sp)	Advance to Next M.A
$0202=x \times x \times$		Current Contents M A 0202
	0300	Enter New Contents
02020300.		
	(Spl	
$0204=$ XXXX		
	0200	
XXXX 0200		
	\{Spl	
$0206=$ XXXX		
	0021	
XXXX0021.		
	(Sp)	
$0208=\mathrm{XXXX}$		
	0201	
XXXX 0201.		
	(Sp)	
020A $=$ XXXX		
	000F	
$x \times \times \times 000{ }^{\text {a }}$		
	(Sp)	
$020 C=X X X X$		
	A001	
XXXXX A001.		
	(Sp)	
O2OE $=\mathrm{XXXXX}$		
	2 E80	
X \times X $\times 2 \mathrm{E} 80$		
	(Spl	
$0210=x X X X$		
$x \times x \times 2 F 41$	2F4,	The entire program has been entered

$X X X \times 2 F 41$

Fig 5. An example of how easy to use the TM990/189 can be. The UNIBUG monitor cannot be praised highly enough.

BUY
 noscom=2 NOW AND GETA FREE IGK RAM BOARD

The lack of availability of the MK4118 RAMs has seriously delayed the launch of the Nascom 2, so we have decided to relaunch the product with an offer few will be able to refuse.
The Nascom 2 will be supplied without the optional user 4118 s . Instead, we will supply a 16 K dynamic RAM board and the interconnect for the NASBUS absolutely FREE. This board allows further expansion to 32 K . Also. when the 4118 s become available. customers taking advantage of this offer can have the 8 K for just $£ 80$ (plus VAT).

Mean while, the empty sockets on the Nascom 2 can be filled with 2708 EPROMs allowing dedicated usage. now with 16 , or 32 K of extra RAM. All the other features of the Nascom 2 are available and these include

MICROPROCESSOR

Z80A 8 bit CPU which will run at 4 MHz but is selectable between $2 / 4 \mathrm{MHz}$

HARDWARE

$12^{\prime \prime} \times 8^{\prime \prime}$ PCB through hole plated, masked and screen printed. All bus lines are fully buffered on-board. PSU : $+12 \mathrm{v}, ~ 5 \mathrm{v},-12 \mathrm{v},-5 \mathrm{v}$

MEMORY

- 2K Monitor-NAS SYS 1 (2K ROM) - 1 K Workspace/User RAM - 1 K Video RAM - 8K Microsoft BASIC (MK 36000 ROM)

INTERFACES

New 57-key Licon solid state keyboard. Monitor/domestic TV On board UART provides serial handling for Kansas City cassette interface ($300 / 1200$ baud) or the RS232/20mA teletype interface Totally uncommitted PIO giving 16 programmable I/O lines.

NASCOM UK DISTRIBUTORS

AODA COMPUTERS Ealing. London W5 Tell 01-5795845 BITS \& P.C.S Wetherby. Tel: 093763744 BUSINESS \& LEISURE MICROCOMPUTERS Kenilworth. Tel. 0926512127 THE BYTE SHOP Ilford.Essex Tel:01.5542177 London W1. Tel 01-6360647 COMPUTERLAND Nottingham. Tel:060240576 Manchester 1. Tel.061-2364737

Birmingham

Tel 021-6227149
Glasgow
Tel 041-2217409

TARGET ELECTRONICS Bristol Tel:0272421196 THE CAMERA CENTRE Barrow-in-Furness. Tel 022920473
COMP SHOP
New Barnet. Herts. Tel 01-441 2922 COMPUTER MANIA Great Milton. Oxon. Tel. Great Milton 729 C. C. ELECTRONICS Torquay.
Tel:0803 22699 DATRON MICRO CENTRE Sheffield. Tel:0742585490 ELECTRONIC SERVICES Sheffield Tel 0742668767 ELECTROVALUE LTO Egham. Surrey Tel. 078433603

ELECTROVALUELTD
Manchester M19 Tel.061-4324945 ELEY ELECTRONICS Glenfield. Leics. Tel 0533871522 HAPPY MEMORIES Southampton. Tel 070339267 HENRY'S RADIO London W2. Tel-01-7231008 INTERFACE COMPONENTS Amersham, Bucks Tel:0240322307 A \& G KNIGHT Aberdeen. Tel:0224630526

LOCK DISTRIBUTION Oidham Lancs. Tel:061-652 C431 MICRODIGITAL Liverpool L2 Tel:051-227 2535 PHOTO ACOUSTICS Watford. Herts Tel:0923 32006 PIPS COMPUTER SERVICES Whitley Bay. Tel 0632482359 P \& 0 COMPUTERS Belfast STRATHAND Glasgow. Tel:041-5526731

The Nascom 2 makes extensive use of ROMs for on-board decoding. This reduces the chip count and allows easy changes for specialised industrial use of the board. On-board link options allow reset control to be reassigned to an address other than zero The 1 K video RAM drives a 2 K ROM character generator providing the standard ASCII characters with additions - 128 characters in all There is also a socket for an optional graphics ROM on-board.

$\therefore\left[\begin{array}{lll}\square H\end{array}\right.$

What to look for in the March issue: on sale February 1st

TV SOUNDS GOOD?

Tired of tinny tunes from your telly? The melodic meanderings start out from the transmitter in super-duper hi-fi. but the cost cutting sounds section of your set takes care of that, lowering the fi at the speed of light. Next month Richard Maybury explores the world of TV sound and comes up with a few ideas on improving it.

THE ULTIMATE METAL LOCATOR

Calling all treasure hunters. How many times has your metal detector gone ping or buzz or hello sailor and you've shifted half a ton of Surrey only to find a non-biodegradable ring pull tab? Well, next month we have a discriminating metal locator for you.

The magic machine rejects nails, bottle caps, aluminium foil and ring pull tabs. The design also features full ground effect exclusion over normal or high permeability soils. Search for your pot of gold with deepseeking VLF plus three TR discriminating ranges. Instant tuning recall is made possible by a push button memory circuit.

BLACK HOLES

When a massive star reaches the end of its life, uses the last of its nuclear fuel and explodes as a supernova, one of three things can happen. The supernova explosion may destroy the core, or, if a small core remains, it may become a neutron star, or, if it is large enough, it may collapse to form a black hole.

Next month lan Graham has a bash at explaining that most enigmatic of astronomical propositions - the black hole.

HEATER POWER CONTROLLER

With most heater controllers, your heater is either on or off and the room temperature fluctuates several degrees etther side of 'comfy'. Our design will keep your room temperature stable to within half a degree. In addition, by using zero voltage switching. RF interference is avoided

ELECTROMYOGRAM

The ETI Muscle Meter senses the tiny electrical impulses associated with muscle activity. As Superman flexes his biceps you can hear it all happening and see the activity building up on a meter

If you're into Biofeedback you can use the ETI Muscle Meter to learn to relax more effectively. On the other hand. if you're into having fun, there's plenty of scope for doing your own thing. Watch this space (give or take a few pages) to find out how the miracle machine picks out the fractions of a microvolt of relaxed muscles from the volts of 50 Hz hum present in the body - induced from power and light wiring.

Having investigated the Mk 14's architecture last month we plunge in with the instruction set.

Human nature being what it is, you've probably been trying some of the programs in the Mk14 booklet. Now if you've been through the book and completely understood what you've been doing, then this series is no longer for you. If, as is more likely, you're more baffled than you were when you started, then read on - this is designed with your needs in mind.

The old adage about walking before you attempt to run holds as true with programming MPU's as in any other activity, so the first exercise we're going to try is a very simple one - adding two one-byte numbers. This is the one we tried very early on with the breadboard unit ; let's see how it's done with the Mk14.

Hex Versus Binary

Two obvious differences emerge right away. One is that we use hexadecimal numbers to represent binary numbers or instruction codes, the other is that we can't start at the lowest address of 0000 . Because of the monitor program in ROM and the way in which the RAM addresses are decoded, all the addresses up to OF12 are spoken for, and just to keep a safe margin, we should start all our programs at 0F20. Why keep a "safe margin"? Answer later, it's all to do with the way we use the memory, folks.

Address	Data	Reminder
0F20	C4	LDI
OF21	1F	first number
OF22	F4	DI
OF23	C2	second number
OF24	C8	ST
OF25	02	at 0F27
OF26	3F	return to monitor

Fig.1. Our first program for the Mk14.
The program is shown in Fig.1, it adds the number $1 \mathrm{~F}(00011111)$ to $\mathrm{C} 2(11000010)$ to produce the answer E1 (11100001). It's a simple enough program, and its importance at this point is that it gets you used to the way in which the Mk14 (and most of its more costly cousins) operates. Switch on and reset. Now tap out the starting address $0-F-2-0$. The dashes aren't part of the number, just a reminder for you not to rush it. Make sure that each key has been properly pressed, and look for the address appearing on the left-hand side of the display.

Once the starting address has been entered, we need to enter data, and to do so we need to press the key marked 'Term'. It's an odd choice of name; the KIM -1 (on which I first cut my teeth) has a much more logical system of AD for address and DA for data, but a few minutes of training will soon convince you that you can live with it. Once 'Term' has been pressed, any numbers which are entered from the keyboard go into memory as data, instructions or numbers. The entry we need to make at address 0F20 is C4, the 8060 code for load-immediate.

We don't have to go through all the routine of selecting a new address now for the next data byte, because
the 'Mem' key is a single-step control. Pressing 'Mem' causes the address to change to 0F21 (check that this shows on the address side of the display), and the new data 1 F can now be entered. Another jab on the 'Mem' key takes the address to 0F22, and we enter F4, the add-immediate instruction. At 0F23 we then key in C2, the number which is to be added to $1 F$, and now we have to look for a way to display the answer. Memories of the simple Eurobreadboard system provide a clue, to use the Store command with a memory displacement. At 0F24 then, we input C8, the store instruction, and follow it at 0F25 with 02, so that the result will be stored two places on at OF27.

Take your time over all this, because it pays to acquire good habits. If you're completely new to it all, you'll probably forget to press 'Mem' at some stage and end up by skipping a step. Microprocessors are utterly unforgiving about errors like this - each step must be 100% correct, so until you really have the hang of it work slowly and think ahead about what you are doing. If you have boobed, press the key marked 'Abort', and then key the address to which you want to return. Press 'Term' again, and you can enter new data at this address, then single-step through the rest of the program, checking what you've entered by using 'Mem'. If this is your first program ever, it's a good idea to use the 'Abort' key to go right back to OF20, and check each step again.

Running Your Program

Now we've entered a program, how do we run it? There's no point in pressing 'GO' at this stage and expecting something to happen - something might happen, but certainly not what you expect! Why not? The address on the LEDs at the end of the program writing exercise is OF25, and there's no program starting at OF25 unless some phantom programmer has been busy. Worse still, there will be a lot of gibberish stored in the memory from OF26 onwards which could interfere with our program if we let it, so we can't let the program start here. We don't particularly want the machine to run through all the memory steps from OF26 to the end of the RAM, so it's a good habit to enter $3 F$ as the last byte of each program. Why 3F? That instruction exchanges the program counter with pointer P3, and on the Mk14 and a lot of other 8060 -based units, that is a command which causes a return to the monitor program. That way, we don't sweep through all the garbage. The complete program is shown in Fig.1.

How do we run it now? Once again, there's a definite procedure. Press 'Abort'. Despite the name, it doesn't cause everything to clear, it simply lets the keyboard revert to addressing again, so that pressing a key doesn't affect memory. An alternative for this simple program (but not for all others) is to press the red 'RESET' button, which will cause something noticable to happen - it clears the display back to zero. Whichever one you press, the end result is the same; you can now key an address, the starting address for the program which is, of course, 0F20. Whichever way you got there, it's only at this starting address that you can press GO and get the sort of response you expect, unless, of course, you have filled the rest of the memory with NOP (Nooperation) instructions.

In the event, the response to pressing ' GO ' is fast the address shifts to OF27 and the data LEDs display E1, which is the answer to the sum.

Changing Your Program

Now in case you think it's too easy, try this simple modification. Without switching off, which would cause the mem-
ory to lose the whole program, press 'Abort' or 'RESET', and dial up the address 0F26. The data byte here is $3 F$, the return-to-monitor instruction. Press 'Term', and then 0; this has the effect of removing this instruction, leaving the rest of the program unaffected. Now 'Abort' or 'RESET', key in 0F20, and 'GO'. What happens?

The address you end up with is 0022, the starting address of the monitor program, and the data byte is 3 F . To get to your answer now, you will have to key in 0F27, the address where the answer is stored. If you use the 3 F command at the end of your program, the program stops at the step following 3F, displaying your answer. I've put stops in italics, because what's actually happening is that the microprocessor is skipping between the monitor program and the last program address, displaying what's stored there.

Address	Data	Reminder
0F20	C4	LDI
OF21	1F	first number
0F22	F4	ADI
0F23	C2	second number
0F24	C8	ST
0F25	03	at 0F28
0F26	$3 F$	return to monitor
0F27	00	to avoid confusion!

Fig.2. The modified programs.
Just rub it in a bit, modify the program again as shown in Fig.2. What's changed? We've simply made the memory displacement 03 instead of 02 , so that the answer will now be stored at OF28. At OF 27, there's now 00 stored, to prevent anything silly happening. What happens when we run this? That's right, the address which is displayed is 0F27, content 00. To get to the answer we have to single-step, using 'Mem', to 0F28, where we decided to put the answer. The stop is always one step after the 3 F instruction.
To find the answer at the end of a calculation -

1. Store immediately after $3 F$ instruction at the end of the program. Answer is then displayed at end.
2. Leave answer in the accumulator by returning to monitor (for example, use 3F after step C2 in the programs above), then dial up address OFFD.
3. Store answer at some memory address, and look up this address at the end of the program.
4. Store answer in the extension register, and look up OFFE. Fig.3. Where to find your answer.

Now all of this is yawningly obvious to the expert, but you'll have a job to extract it from any of the books which are supposed to help the beginner. Since everyone I've met started as a beginner (even my old mate Sheridan), it all needs to be said. Just in case you've lost track of it all by now, Table 3 sums up all the ways of getting the answer at the end of a program. If you've discovered all of this for yourself, you'll probably be hooked on the Mk14. If, on the other hand you worked it all out for yourself without needing to try it, you're probably a genius, and you'd better emigrate right away. Since I don't write for geniuses (we just telepath) or experts, the next exercise is just one easy step on from the first one. The disadvantage of program number one was pretty obvious - the numbers we are adding are in the middle of the program, and we have to alter the program to alter the numbers. Couldn't we place them a bit more conveniently?

Fig. 4 shows a program in which the numbers that are to be added are placed at the end of the program. The pro-

Address	Data	Reminder
OF20	C0	load first number
OF21	06	at 0F27
OF22	F0	add second number
OF23	05	at 0F28
OF24	C8	store....
OF25	04	at 0F29
OF26	3F	return to monitor
OF27	1F	1st number
OF28	C2	2nd number
OF29	..	Result here.

Fig.4. Locating the data at the end of the program.
cedure for loading this program should be reasonably familiar by now. 'RESET', enter in address OF20, press 'Term', and then enter in the first data byte CO. From this point, use 'Mem' to single-step the address, and enter each new byte in turn. At the end of the program steps, 'Abort' or 'RESET', key in OF20 and 'GO'. Why doesn't it stop at the answer?

The reason is that the answer is at address 0F29, but the stopping point is after 3 F , and this displays the first of the numbers to be added, not the answer. What's going on?

The difference here is program-relative displacement. Each "do" instruction is followed by a number which refers to a place in memory which is that number of steps on. For example, C0, a load instruction is at address OF20, and the next byte is 06, at address 0F21. That means that the number which is to be loaded into the accumulator is at a memory address six steps on from 0F21, which is 0F27; it's the number 1 F which is one of the numbers to be added. Similarly, the add instruction F0 is followed at OF23 by 05, meaning that the byte is loaded from address 0F $23+5=$ 0F28, the number C2. The store instruction C8 is followed by 04, so that the answer is at 0F29. To get to this after setting to OF20 and pressing 'GO', we need to single-step twice.

Address	Data	Reminder
OF20	C0	load. . .
OF21	07	first number
OF22	F0	add. .
OF23	06	second number
OF24	C8	store...
OF25	02	at OF27
OF26	3 F	return to monitor.
OF27	$\ddot{\text { F }}$	answer displayed
OF28	C2	first number
OF29	second number.	

Fig.5. The previous program modified to display the answer.
Could we arrange this more sensibly? Certainly we could, and the modified program is shown in Fig.5. This time, the memory space immediately after $3 F$ is left for the answer, and the input numbers are put in OF28 and OF29. Much better - get back to 0F20, press 'GO' and the answer E1 at address 0F27 obediently shows. Why couldn't we just put 3 F after the data numbers, and arrange the answer to be in the next byte? Because we don't want the program running over the two data bytes, that's why. These bytes are there to be fetched as data when required. If they are read by the program, one of them at least will be read as an instruction, fouling up the whole scheme. Remember what we said about starting and stopping at the right places?

Working Backwards

Made bold by all this success, let's try placing our data num-

MPU's BY EXPERIMENT

Address	Data	Reminder
OF20	1F	1st number
OF21	C2	2nd number
OF22	C0	load. ...
OF23	FD	1st
OF24	F0	add. ...
OF25	FC	2nd
OF26	C8	store. ..
OF27	02	end
OF28	$3 F$	

Fig.6. Locating the data at the beginning of the program.
bers (to be added) at the beginning of a program, Fig.6. This time we'll have to displace backwards, using negative numbers - in case you've forgotten or never learned, Fig. 7 shows how negative numbers are formed. Key in the program in the way which should now be familiar, humming to yourself, reset or abort, ring up 0F20 and 'GO'. What do you get?
Forming a HEX number in easy steps.

Steps

1. Write down the negative number
2. Convert to 8 -bit binary, ignore sign
3. Complement the binary number
4. Add 1 to lowest place (R.H.S.)
5. Convert to HEX
6. Write Hex number

Fig.7. How to make negative numbers.

Example

- 12 (decimal)

00001100
11110011
11110100
F4
F4

What went wrong? We forgot, didn't we that a program has to start at the beginning, and the beginning of our program is at 0F22, not at 0F20 now. The data byte at 0F20 is a number, 1 F , not an instruction, but if we start the program running at this address, 1 F will be taken as an instruction. The 8060 is just a chunk of silicon, it doesn't know any better! Reset, and this time make the starting address OF22. Now when you press ' GO ', the correct answer, E1, will appear at OF29, which is a much simpler way of arranging things.

Doing It Yourself

Now that you've mastered this (you have, haven't you?) you can start on some homework. Turn to page 45 of the S. of C. manual for the Mk14 and you'll see a program for two-byte addition. This program, as the name suggests, is for adding two sixteen-bit numbers. Because the memory stores and the accumulator of the 8060 are only one byte wide, we can read or write only one byte from or two each memory address, so that two-byte numbers have to be split up and stored in two memory addresses. The obvious logical method is to divide each two-byte number into a lower (L) byte and a higher (H) byte. One number is stored with its high byte at 0F20 and its low byte at 0F21; the other number is stored with its high byte at OF22 and its low byte at 0F23. The two bytes which are the result of the addition are also stored, after running the program, at OF22 and OF23, so that subsequent additions can be carried out.

Try running through this program, remembering that to view the answer you'll have to key up address 0F22 to find the high byte of the answer and then press 'Mem' to get the low byte. Now for the challenge. Can you re-design the program so that the high by te of the answer appears at 0F32, and the low byte at 0F33?

A Case Of Amnesia

Now for something completely different, since you're probably fed up with addition by now. You'll have noticed that when you switch on, there are always data bytes in the

Address	Data	Reminder
0 F 12	00	clears
0F13	CD	stores, auto-indexed to P1
0F14	FF	index, set to decrement
0F15 0F15	$\begin{aligned} & 90 \\ & \mathrm{FC} \end{aligned}$	jump. . back to 0F13

Fig.8. The memory clearing program.
memory. The reset action does not clear these memory bytes, it only clears the registers of the 8060, and the only way that these memory bytes can be cleared is by writing 00 into each memory space.

Now this would be hard work if we had to dial up each address, set to 00, advance the address using 'Mem', set to 00, and so on through 128 bytes of memory. Fortunately, it's possible to get the microprocessor to do this using the deceptively simple program which is shown in Fig.8. The program starts at 0 F12 with the data byte 00 - this needs only one press of the zero key, incidentally, but remember to press 'Term' first, or you'll alter the address instead of entering zero.

The instruction at 0F13 is to store at an address relative to pointer register number $1(\mathrm{P} 1)$ - but what is the address in pointer 1? If we've just switched on, and that, after all, is when we most need to clear all the memory bytes, then the address in P1 is 0000 , so that the store instruction would be relative to this. The index number is at 0F14, and it's $F F$, equal to -1 , so that the address will decrement on each fetch. Since the address is decremented before being fetched, the first address to be put out will be $0000-1=$ FFFF. This is the first address which will have 00 stored into it, and the next instruction is at OF15, a jump. At OF16, the amount of the jump is specified, four places back to 0F13 to carry out the whole operation again. Four places back to 0F13? When there's a jump back, you must make the jump one more number than the number of places you have, because the program counter will increment during the instruction. The result is that when you jump back from OF16 to OF13, the program counter is busy going on to 0F17, and four steps of jump, rather than three are needed. Next question? Why did we jump to OF 13 rather than OF12? This is one of these rare occasions when it doesn't matter too much. The accumulator is cleared by the 00 at 0F12, and ought to stay that way, so that jumping back to $0 F 13$ is quite satisfactory, there's still zero in the accumulator. If you're fussy and you want to go to OF12, use FB in place of FC at 0F16.

On the next run, the pointer register will hold FFFF, the number which was caused by decrementing 0000 on the first run, and when this is done again, the address will be FFFE, so that zero will be stored at this address. Since the highest order of address lines isn't decoded, the memory positions OFFF and OFFE will be the ones which are actually cleared. What stops it? Simple, the program goes down the memory addresses (I nearly said down memory lane) storing 00 until it reaches 0F16. Once it has stored 00 at this address the jump instruction can't work again, and the system returns to the monitor program again, showing the address 0022 and data byte 3F. By this time, every byte of memory from 0F16 upwards has been cleared, and if we now start writing programs at OF20, we can be sure that we won't encounter any problems from garbage in memory. It's a short program, but an important one to understand, because many operations are based on the idea of auto-indexed loading or storing - more of them later.

- A 6502 based microcomputer •Superb IK monitor TANBUG•
- IK RAM for user programme, stack and display memory
- VDU alphanumeric display on un-modified domestic T.V. of 16 rows by 32 characters - Optional lower case pack making a total of 128 displayable characters - EXCELLENT
- Optional chunky grapics (64×64pixels)•

DOCUMENTATION

TANBUG

```
Monier avallatie ravbirg ollarcomemork atd reginie.
```



```
Dther useful teatures
```

EXPANDABLᄃ
TANEX EXDanes the microtan 65 into a system Piovides 9 K RAM 6 K ROM. 8 K
BASIC. 3 serial to (incluaing RS232120mA) 32 IIO lines and \& 16 bill
AVAILABLE EX-STOCK FROM -
TANGERINE COMPUTER SYSTEMS,
FOREHILL,ELY,CAMBS.

MINI-ADS

CLASSIFIED INFORMATION
 Semi-Display:-
 1- 3 insertions $-£ 5.00$ per single column centimetre
 $4-11$ insertions $-£ 4.50$ per s.c.c.
 12 insertions - $£ 4.00$ per s.c.c.
 Classified:-
 19 pence per word (minimum 25 words)
 Box number $£ 1.00$ extra
 ALL ADVERTISEMENTS IN THIS SECTION MUST BE PRE-PAID
 Closing date:-2nd Friday in month preceding publication Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
 Cheques and postal orders should be crossed and made payable to 'Computing Today'
 CLASSIFIED ADS, COMPUTING TODAY, 145 CHARING CROSS ROAD, LONDON WC2H OEE
 (Tel. 01-437.1002)

INTENSIVE WEEKEND COURSES IN

BASIC

including hands-on mini computer operation.
This short intensive course is intended to instruct from minimal knowledge to an operational capability of computer programming in BASIC high level language. The course is fully residential from Friday evening to Sunday afternoon.
Option of non-residential weekend, weekday evening and weekday courses available if required

For further details of dates avarlable. fees, etc. Phone (0401) 43139, or write to: Dept CT
CLEVELAND BUSINESS SERVICES
Cleveland House, ROUTH
Beverley, North Humberside

PROMS PROMS PROMS

Blank or programmed with your code. Quick turn-around, low prices, e.g. 2708 (450n Sec)
Unprogrammed $\quad £ 6.50$

Erased
Reprogramming
Copied
S100 16K Prom board
Kit (less 2708's)
$\mathbf{£ 5 2 . 0 0}$
Asm and Tested $\mathbf{£ 6 1 . 0 0}$
Write for details and price list of selected components.
Add 35p P \& P plus V.A.T
Winchester Technology Ltd. 21 Malibres Road, Eastleigh, Hants. SO5 1DS

J. MORRISON (MICROS)

-BASIC FOR 6800 systems
Powerful arithmetic routines 9 digit. Exp. +99
DATA 4×2708 EPROM $£ 40.00$

- STANDARD ASSEMBLER (6800) Approx. 23 K

SuDoorts FCB. FCC, ORG. EQU.RMM All
Motorola mnemonicz.

- 6800 TRACER

Will trace through rom and ram
Prints out CC AB INDX SP. Address data.
LISTING:DATA $£ 3.50$

- VARIOUS GAMES FROM ONLY $£ 1.00$

Send SA.E. for isi
All prices inclusive
17. Summersell

TEL. 017611186 London S.E. 27

LATEST 8 K WITH LARGE KEYBOARD $£ 480$. $16 \mathrm{~K} £ 560.32 \mathrm{~K} £ 660$. Dual Floppy £680
BASE 2 PRINTER $£ 450$
PROGRAMMERS TOOLKIT, $£ 45$.
CHALLENGER 14 K £223, complete with RF converter.
Also Challenger 2 range at very low prices.
"TEXAS TI 99/4 £890 with $13^{\prime \prime}$ colour Monitor*
The most advanced home computer, delivery March 1980, order now.
AIM65 4K, cased, powered, Basic $£ 420$.
SEAWELL expansion chassis, memories etc.
S-100 MEMORY $16 \mathrm{~K} \quad 2 \mathrm{MHz}$ FULLY STATIC, assembled, tested - bargain, £150.
COMPLETE S-100 SYSTEM WITH Z-80
CPU, North Star double-density disk, 32K memory £1,200.
Also other S-100 products.
Full technical support from MAPCON engineers.

INTELIIGENT ARTEFACTS

Cambridge Rd., Orwell, Royston, Herts. Tel. Arrington 689

uHEX EPROM PROGRAMMERS

426 2508/2708/2758/2516/2716 Dual and Single supply Eproms, £95 416 2704/2708/2716 Dual only, £65 480 2704/2708 Kit $£ 35$. Built $£ 40$ All programmers require only standard power supplies. The 426 and 416 are cased and have push-button selection.
Program any length block into the Eprom.
Software included. Range covers Z 80 ,
8080, 6800 and 6500. State machine.
PIO, PIA INTERFACE MODULES Available for Z80/8080 and 6800/6500.
Prices include carriage. Please add VAT. SAE for further product information.

MICROHEX COMPUTERS

2 Studley Rise, Trowbridge, Wilts.

COLOUR MODULATOR
 Kr
 FOR ALL TV GRAPHICS!
 $£ 9.95$
 30,
 $+$ Us⿻ 禸
 WILLIAM STUART SYSTEMS
 omilum stuart srstems v: 3355 te 1027810244 Barclavcard Access welcome

50 Hz SUPERBOARDS BRITISH MODEL from $£ 190$ plusvat
 Fully built, tested and set up Authorised dealer backup
 Free cursor control, backspace, etc. taps
 C.T.S. 1 Higher Calderbrook. Littleborough, Lancs.
 Tel. Littleborough 79332 anytime

FOR SALE, Data Dynamics ASR33 on stand, comprising punch, reader and printer. Modem/RS232 interface with cable. Recently serviced and in excellent condition. $£ 300$ ono. Ruislip 72852 after 6.30 p.m.

TRITON COMPUTER. Fully built and tested. With full on-board memory, and a number of programs on cassette. $£ 300$ o.v.n.o. M. Kuht, 44 Mayfair Road, Cowley, Oxford. 775706.
${ }^{4}$ T.V. TYPEWRITER/REMOTE TERMINAL. For low cost Video Terminals or T.V. Typev riters get NEWTRONICS Video Boara kit ' $£ 70$ inc. P \& P. Full keyboard terminal kit - $£ 140$ inc. P \& P. Learn computing with the ELF computer kit, ideal for beginners - $£ 79$ inc. P \& P. SAE details Penman, 8 Elliothill Street, Dunfermline, Fife.

NASCOM 1, in Verocase, with fan, PSU, Nasbug T2 and CCS level 'A' Basic, in working order, $£ 160$ o.n.o. Ring Pipe Gate 063-081-312 after 6 p.m.

CLASSIFIED

MK 14 - Replace calculator type display with full size FND 500 displays. PCB, filter and instructions $£ 2.25$ way keyboard complete kit $£ 10$. Useful notes on MK 14 50p. Rayner, 'Kismet', High Street, Colnbrook, Bucks.
MICROCOMPUTER $2 \frac{1}{2}$ Kbyte Memory, Ikbyte memory mapped VOU, cassette interface, PSU 16 bit 1/0 Port, Manual £119 U. Yoltay, 1 Grosvenor Gardens London N. 10.

NASCOM 1 SOUND, bring your programs to life. Complete kit of parts for sound output buffer. No on-board modifications, includes "Alien Attack" game program listing with sound subroutine to add to your own programs. $£ 7-00$. Program and instructions, without kit $£ 5-00$ (750 byte program can be used with or without sound) Ramon Electronics, 94 Linden Crescent, Folkestone, Kent.
ELF II PERSONAL COMPUTER. Many extras including "Giant-Board," "LightPen," manuals, book, articles, many programmes etc. Worth $£ 200$ plus. Perfect working order, £150 ono. Please phone 0614457428.

PRINT OUT. Put your output into print. I have available various models of Creed No. 7 teleprinter. Page, Page \& tape, Readers. All in working order. S.A.E. for details. Kelly, 21 Sunnywood Drive, Tottington, Bury. BL8 3EN.
COMPUTER CASSETTE PROGRAMS DUPLICATED from single or double-sided cassette masters. From 33p inclusive. Minimum 10. Simon Stable Promotions, Inglenook, West End, Launton, Oxon. 086922831.

WANTED. PET. $8 \mathrm{~K}, 16 \mathrm{~K}$ or 32 K . In good condition. Phone John Hill evenings or weekends. Newtown Llantwit (South Wales) 203163.

DRL SOFTWARE. For 8 K Pet on cassette. Morse Code trainer with sound and options, £8. Junior Music Tutor with sound, $£ 4$. Bingo. Turns Pet into professional Bingo machine, £8. Bank statement checker, £4. Wipe Out Game, £4. DRL Software, Coventry, New Road, Bracknell, Berks.

SUPERB CASED NASCOM 1, T4-Nassey switch selectable, 4 MHZ clock (memories changed), Minimotherboard plus 3 connectors, extra baud rates, PSU, snow plough, 20 plus more programs on cassette, documentation and much more. Worth £320. Sell £240. Also MK14 plus extra ram $£ 46$. Sell just for need of cash. Phone after 7 p.m. 015812451.

HIGHEST LEVEL TRITON for sale. Includes 20k RAM 22k ROM, motherboard, microprocessor controlled cassette deck, high resolution monitor, professionally built. Levels 5 and 7 monitors and basic in ROM. Level 6 monitor and BASIC in cassette. Only £800. Telephone Steve 2475338 after 6 pm.

ADVERTISEMENT INDEX.

ACORN COMPUTERS 10
ADDA COMPUTERS 41
BARINGLOCK LTD 47
BUSINESS \& LEISURE MICROCOMPUTERS 65
CARTER KEYBOARDS 25
CHROMASONICS 47
COMMODORE SOFTWARE 5
COMP COMP COMP 74 \& 75
G. P. INDUSTRIAL 12
HAL COMPUTERS 33
HAPPY MEMORIES 33
H. L. AUDIO 26
A. J. HARDING 47
HENRYS RADIO 48
INTRACEPT ELECTRONICS 41
LOWE ELECTRONICS 22
L. P. ENTERPRISES 59
NASCOM 66
NEWBEAR 41 \& 76
NIC MODELS 47
PETACT 60 \& 61
PETSOFT 14
POWERTRAN COMPUTERS 2
P \& R COMPUTER SHOP 49
SCIENCE OF CAMBRIDGE 4
SOFTWARE PUBLISHING 51
STRATHAND 49
TANGERINE 71
TIMEDATA 47
TRANSAM 40
WILLIAM STUART SYSTEMS 49
VERO 22

- 8 MHz Super Quality Modulators	tors $\mathbf{£ 4 . 9 0}$
6 MHz Standard Modulators	£2.90
C12 Computer Grade Cassettes 10 f	S 10 for $\mathbf{£ 4 . 0 0}$
Super Multi-rail P.S.U. $+5-5+12 \mathrm{~V}$	+12v £29.50
Nascom I with Nas-sys $\left.\begin{array}{l}\text { Kit } \\ \text { Assembled }\end{array}\right\}$ Limited quantities	$\begin{array}{rr} \text { Special Price } \\ \text { SS } & £ 125.00 \\ & £ 140.00 \end{array}$
ETI Breakout Game - Chip and PCB	d PCB $\quad \mathbf{£ 9 . 9 0}$
S100 Expansion Motherboard for Nascom I	for $\mathbf{E 3 9 . 0 0}$
Anadex Printer Paper - 2000 sheets	sheets $\quad \mathbf{£ 2 5 . 0 0}$
Floppy Disks $5 \frac{1}{4}$ " Hard \& Soft Sectored	£3.50
Floppy Disk Library Case 51/4"	£3.50
Lexicon Language Translator	£125.00
Modules for Lexicon	¢29.00
Eprom Boards	£63.00
8K Static Ram Boards - S100	¢110.00
Grandstand Video Game	$£ 59.00$
Cartridges for Grandstand	£11.99
George Risk Ascir Keyboard	£39.00
Cartridges for Atari - Full Range in Stock	£13.90
Interface PET IEEE - Centronics Pa Not decoded	ics Paralle $£ 49.00$
Decoded	£77.00
Interface to Centronics parallel for TRS80	for $\mathbf{£ 7 5 . 0 0}$
Verocases for Nascom 1 \& 2 etc	etc $\quad \mathbf{£ 2 2 . 5 0}$
Keyboard Cases	£9.90
- Electric Pencil for TRS80	$£ 29.00$

HITACHI PROFESSIONAL MONITORS $9^{\prime \prime}-\mathbf{£ 1 2 9}$ $12^{\prime \prime}-\mathbf{£ 1 9 9}$

- Reliability Solid state circuitry using an IC and silicon transistors ensures high reliability. - 500 lines horizontal achieved in picture center. Stable picture Even played back pictures of VTR can be displayed without jittering - Looping video input Video input can be looped through with bult-in termination switch. External sync operation lavailable as option for U and C types) Compact - \qquad $\sqrt{6}$

 RRP $\epsilon 795$
for 32 K The PEDIGREE PETS

- Ideal for home, personal and business computer systems - 12 diagonal video monitor - Composite video input - Composite video input e Compatible with many computer systems e Solid-state circuitry for a stable \& sharp
picture \bullet Video bandwidth $-12 \mathrm{MHz}+308$ input im pedance -75 Ohms e Resolution 650 lines Minimum in Central 80% of CRT: 550 Lines Minimum beyond central 80%

- NASCOM-2 MICROCOMPUTER

Microprocessors

INTERFAC

Keyboard
Nascom, manitor coritrolied decoding
T.V. The Iv beak 10 peak video signal
the domen is uiso led to the of boara madulato
1.O.

RS232/20mA teletvpe interlaca
The casselte interface is Kansas City standard at enter 300
The RS232 and 20 mA lopp Gonnector will intertace diee
itito any standard teletype
The input and output sides of the UART ate independenti
en it is possible to house input on the
PIO There
MK3881) gis also. a totally uncommmted Paranes a ddressate giving 16, programmabie, 170 lintas these ate Documentation Full construction article is provided tor
ided for the morntor and Basic
Basic The Nascom 2 contains a full BK Microsoft Basic in SET, RESET for simple programmung
With free 16 K RAM board
COMPUTING TODAY FEBRUARY 1980

EUROPE＇S FASTEST SELLING ONE BOARD COMPUTER

$\star 6502$ based system－best value for money on the market \star Powerful 8K Basic－Fastest around \star Full Qwerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board．\star Power supply and RF Modulator on board．\star No Extras needed－Plug－in and go．\star Kansas City Tape Interface on board．\star Free Sampler Tape including powerful Dissampler and Monitor with each Kit．\star If you want to learn about Micros，but did＇t know which machine to buy then this is the machine for you．

Buld，Understand and Program your own Computer tor oniv a small outtay	KIT ONLY £199＋VAT NO EXTRAS NEEDED	AVAILABLE READY ASSEMBLED \＆TESTED READY TO GO FOR $£ 249$－VAT
Speciallv designed case for Compuki in prange black With toom for accessunes E29．50＋VAT		

The Compukit UK101 comes in kit form with all the parts necessary to be up and working，supplied．No extras are needed．Ater plugging in just press the reset keys and the whole world of computing is at vour fingertips．Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs．By pressing the C key the world of Basic is open to you．
This machine is ideal to the computing student or Maths student，ideal to teach your children arithmetic，and is also great fun to use．
Because of the enormous volume of users of this kit we are able to offer a new reduced price of £199＋VAT

THE NEW TRS80 SURPRISE －MODEL II Fast and dxpandoblel

In addition to either 32 or 64 thousand characters（bytes）of internal Random Access Memory．
one built－in $8^{\prime \prime}$ Floppy disk stores an additional one－half milition bytes，including the Disk
Operating System．And you can easilv expand up to a four－dsk system for up to two－million bytes of storage Moder il features upper and liower case letters is buitin． 12 manicesolution video monitor displays 24 lines of 80 normat characters．The protesional 76 ．kev kevboard（with＂calculator＂keypad）includes advanced functions such as Control．Escape．Caps．Hold．Aepeat The kevboard is detachable and moveable for convenient data entry． You ger the enhanced Level ill version of TAS 80 ＇s already－tamous Level il BASIC language and＂TRSDOS＂operating system automatically loaded in memory when you＂power up．＇About 24 K of RAM is used by this software． Each time vau power up，Model II thoroughiy tests itself to insure proper operation Your chosen program can appear immediately without any intermediate steps or questions to answer
Versatility ．．．plug－in expandability
Built－in input output capabilities include two RS－232C channels，and one Centronics parallel port Future expansion is provided for through four pluggin slots for optional PC boards
32K 1－Disk Model II £1999．00

64K 1－Disk Model II
£2200．00
3 DISK EXPANSION
500 K per Drive gives total of
1．5M Byte for only $£ 1399$

Why do people buy more from COMPSHOP than anywhere else？

LARGER STOCKS
＊GOOD SERVICE－we give extended warranties on all our products ＊EXCELLENT REPAIR SERVICE－Through Compucare we repair and maintain most LAST YEAR WE SUPPLIED TO THE PUBLIC－LARGE \＆SMALL

Compucare is a company that has been set up to provide servicing and maintenance for the popular makes of micro－computersi e．Sorce Pet，Apple，TRS80，Nascom，Compukit Our charges are $\mathrm{E7}$ per hou plus parts．
Because of the extensive range of spare parts stocked you can usually expect your micro to Because of the extensive range of spare parts stocked vou can
be repaired within 10 days for an average charge of $£ 14$ labout
Emergency 24 hour repairs can be handled for a E10 surcharge where possible．
－Compukits and Nascoms unsuccessfully constructed will be charged a standard $£ 25$ ．

THE ATARI VIDEO

$£ 138$

COMPUTER SYSTEM

Atari＇s Video Computer System now offers more than 1300 different game variations and options in twenty great Game Program ${ }^{\text {Martridges！}}$
Have fun while vou sharpen vour mental and physical coordination You can play rousing，challenging，sophisticated video games，the games that made Atari famous，
You＇ll have thrill after thrill，whether you＇re in the thick of a dogfight， screeching around a racetrack，or dodging asteroids in an alien galaxy With crisp bright colour（on colour TV）and incredible，true－to life sound effects．With special circuits to protect your TV
Cartridges now available All at $\mathbf{£ 1 3 . 9 0}$ each＋VAT
Basic Maths，Airsea Bartle，Black Jack，Breakout，Surround Spacewar，Video Olympics，Outlaw，Basketban，Hunt \＆Score＊
Extra Paddle Controllers＊Keybsäd Controllers
$-\mathbf{£ 1 4 . 9 0}+$ VAT $-\mathbf{£ 1 8 . 9 0}+$ VAT

77.68 Prices S1ashed!

Bearbag 1 77-68 CPU KIT Bearbag $5 \quad 77-684 \mathrm{~K}$ RAM KIT Bearbag 6 77-68 MON 1 KIT

\star SUPERBOARD II

$\star 610$ EXTENSION BOARD

* FLOPPY DISC DRIVE
(includes DOS, 12 K Basic, Case \& PSU)
6551

SHARP MZ 80K at NEWBEAR

S100 BUS

8 Slot Motherboard 12 Slot Motherboard 20 Slot Motherboard Z80 CPU Board

- Z80 CPU Board Ass. 4 MHz

Z80 CPU Board Ass. 2MHz V.D.U. Board
V.D.U. Board Assembled

Floppy Disc Controller Board Floppy Disc Controller Board Ass. 2708/2716 Eprom Board
2708/2716 Eprom Board Assembled 8 K Static Ram Board
8K Static Ram Board Ass. 250 NS 8K Static Ram Board Ass. 450 NS Prototype Board

[^0]: VISIT OUR SHOWROOM
 WE ALSO STOCK:-
 range ol oooks and magazines. Vero Products including S100 and Eurocard and Wire Wrap equipment. Weller soldering equipment. Ribbon cables. Tools, tapes
 Diskettes and connectors, plus OK tools products.

